Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1992 May;99(1):96-102.

Ion channels in Arabidopsis plasma membrane : transport characteristics and involvement in light-induced voltage changes.

Author information

Department of Biology, Kline Biology Tower, Yale University, New Haven, Connecticut 06511.


White light (25 watts per square meter) induced an increase in plasma membrane K(+)-channel activity and a 30- to 70-millivolt transient membrane depolarization (completed in 2-3 minutes) in Arabidopsis thaliana leaf mesophyll cells. Transport characteristics of three types of ion channels in the plasma membrane were determined using inside-out patches. With 220 millimolar K(+) on the cytoplasmic side of the patch and 50 millimolar K(+) in the pipette, (220/50 K), the open-channel current-voltage curves of these channels were sigmoidal and consistent with an enzyme kinetic model. Two channel types were selective for K(+) over Na(+) and Cl(-). One (named PKC1) had a maximum conductance (G(max)) of 44 picosiemens at a membrane voltage (V(m)) of -65 mV in (220/50 K) and is stimulated by light. The other (PKC2) had G(max) = 66 picosiemens at V(m) = 60 millivolts in (220/50 K). The third channel type (PCC1) transported K(+) and Na(+) about equally well but not Cl(-). It had G(max) = 109 picosiemens at V(m) = 55 millivolts in (250/50 K) with 10 millimolar Ca(2+) on the cytoplasmic side. Reducing Ca(2+) to 0.1 millimolar increased PCC1 open-channel currents by approximately 50% in a voltage-independent manner. Averaged over time, PKC2 and PCC1 currents strongly outward rectified and PKC1 currents did so weakly. Reductants (1 millimolar dithiothreitol or 10 millimolar beta-mercaptoethanol) added to the cytoplasmic side of an excised patch increased the open probability of all three channel types.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center