Format

Send to

Choose Destination
Drug Deliv. 2006 Mar-Apr;13(2):143-8.

Thermally reversible in situ gelling carbamazepine liquid suppository.

Author information

1
Department of Pharmaceutics, Faculty of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia. amalelkamel@yahoo.com

Abstract

Carbamazepine (CBZ), indicated for the control of epilepsy, undergoes extensive hepatic first-pass elimination after oral administration. A rectal dosage form of CBZ is not commercially available, although it is of particular interest when oral administration is impossible. Conventional suppositories can cause patient discomfort and may reach the end of the colon; consequently, the drug can undergo the first-pass effect. Mucoadhesive liquid suppositories of CBZ were prepared by adding carbopol to formulation of thermally gelling suppositories that contain 20% poloxamer 407 and either 15% poloxamer 188 or 1% methylcellulose. Gellan gum was also tried instead of 20% poloxamer. All formulations contained 10% CBZ. The characteristics of the suppositories differed depending on the formulation. The formula containing 20% poloxamer 407, 1% methylcellulose, and 0.5% carbopol showed reasonable gelation temperature, gel strength and bioadhesive force. The analysis of release mechanism showed that CBZ released from the suppositories by Fickian diffusion. In vivo evaluation of the same formulation showed higher peak plasma concentration of CBZ compared with the orally administered suspension containing the equivalent amount of drug. However, there was no statistical significant difference (p > 0.05) in extent of bioavailability between the liquid suppository and oral suspension as indicated by the values of AUC(0 - infinity), 17.9 and 18.8 micro g x h/ml, respectively. These results suggested that mucoadhesive in situ gelling liquid suppository could be an effective and convenient delivery system of carbamazepine.

PMID:
16423803
DOI:
10.1080/10717540500316003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center