Send to

Choose Destination
J Virol. 2005 Nov;79(21):13231-8.

A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector.

Author information

Section of Microbial Pathogenesis, Yale University School of Medicine, 310 Cedar St. (LH 315), New Haven, CT 06510, USA.


Live attenuated vaccine vectors based on recombinant vesicular stomatitis virus (VSV) are effective in several viral disease models. In this study, we asked if a VSV vector capable of only a single cycle of replication might be an effective alternative to replication-competent VSV vectors. We compared the cellular immune responses to human immunodeficiency virus (HIV) envelope protein (Env) expressed by replication-competent and single-cycle VSV vectors and also examined the antibody response to Env. The single-cycle vector was grown by complementation with VSV G protein and then tested initially for immunogenicity when given by four different routes. When given by the intramuscular route in mice, we found that the single-cycle vector was equivalent to the replication-competent VSV vector in generating high-level primary and memory CD8 T-cell responses as well as antibody responses to Env. Cellular responses were analyzed using major histocompatibility complex class I tetramers and direct measurement of cytotoxic T-lymphocyte activity in vivo. We also found that the recall responses after boosting were equivalent in animals vaccinated with replication-competent or single-cycle vectors. Additionally, we observed recall and heightened memory responses after boosting animals with a single-cycle vector complemented with G protein from a different vesiculovirus. Because expression of HIV Env by G-deleted VSV might allow replication in human cells expressing CD4, we generated a single-cycle VSV recombinant expressing a secreted form of the HIV Env protein. This virus was just as effective as the recombinant expressing the membrane-anchored Env protein at producing CD8 T cells and antibody responses.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center