Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2006 Feb;290(2):F289-96. Epub 2005 Sep 6.

Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments.

Author information

1
Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar St., PO Box 208026, New Haven, CT 06520-8026, USA.

Abstract

We have previously demonstrated that mouse proximal tubules in vitro respond to changes in luminal flow with proportional changes in Na+ absorption (Du Z, Duan Y, Yan Q, Weinstein AM, Weinbaum S, and Wang T. Proc Natl Acad Sci USA 101: 13068-13073, 2004). It was hypothesized that brush-border microvilli function as a sensor to detect and amplify luminal hydrodynamic forces and transmit them to the actin cytoskeleton. In the present study we examine whether 1) flow-dependent HCO3- transport is proportional to flow-dependent variations in microvillous torque (bending moment); 2) both luminal membrane Na(+)/H+ exchange (NHE3) and H(+)-ATPase activity are modulated by axial flow; and 3) paracellular permeabilities contribute to the flux perturbations. HCO3- absorption is examined by microperfusion of mouse S2 proximal tubules in vitro, with varying perfusion rates, and in the presence of the Na/H-exchange inhibitor EIPA, the H(+)-ATPase inhibitor bafilomycin, and the actin cytoskeleton inhibitor cytochalasin D. Paracellular permeability changes are assessed with measurements of epithelial HCO3- permeability and transepithelial potential difference (PD). It is found that 1) an increase in perfusion rate enhances HCO3- absorption and microvillous torque, and the fractional changes of each are nearly identical; 2) inhibition of NHE3 by EIPA, or H(+)-ATPase by bafilomycin, produced only partial inhibition of flow-stimulated bicarbonate transport; 3) disruption of the actin cytoskeleton by cytochalasin D blocked the increment of HCO3- absorption by high flow; and 4) HCO3- permeability and transepithelial PD are not modulated by flow. We conclude that flow-dependent modulation of proximal tubule HCO3- reabsorption is due to changes in both NHE3 and H(+)-ATPase activity within the luminal cell membrane and this requires an intact actin cytoskeleton. Paracellular permeability changes do not contribute to this flow dependence. Perfusion-absorption balance in the proximal tubule is a direct effect of flow-induced torque on brush-border microvilli to regulate luminal cell membrane transporter activity.

PMID:
16144961
DOI:
10.1152/ajprenal.00255.2005
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center