Format

Send to

Choose Destination
Mol Cell Biol. 2005 Jun;25(11):4792-803.

The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation.

Author information

1
Yale University School of Medicine, Department of Pharmacology, SHM B226D, 333 Cedar Street, New Haven, CT 06520-8066, USA.

Abstract

The mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an immediate-early gene comprised of a dual-specificity phosphatase domain and a noncatalytic NH(2) terminus. Here, we show that the NH(2) terminus of MKP-1, containing the cdc25 homology domains A (CH2A) and B (CH2B), mediates MKP-1 nuclear targeting and modulates MAPK-mediated gene expression. An LXXLL motif which is known to mediate protein-protein interactions with nuclear-targeted hormone receptors was identified proximal to the CH2A domain of MKP-1. The NH(2) terminus alone of MKP-1 containing this LXXLL motif was sufficient to direct nuclear targeting, and mutating this motif to LXXAA resulted in the exclusion of MKP-1 from the nucleus. We found that the LXXLL motif proximal to the CH2A domain was present in other nuclear-localized MKPs but was absent in MKPs that localized to the cytoplasm. These data suggest that this LXXLL motif confers nuclear targeting properties to the MKPs. The NH(2) terminus of MKP-1 was also found to inhibit the activation of the serum response element (SRE) by preventing MAPK-mediated phosphorylation of the regulatory serine 383 residue on Elk-1. Moreover, we show that MKP-1 plays a major role in the attenuation of serum-induced SRE activity, since MKP-1 null fibroblasts exhibited enhanced SRE activity in response to serum compared with wild-type fibroblasts. The NH(2) terminus of MKP-1, when reconstituted into MKP-1 null fibroblasts to levels similar to endogenous MKP-1 following serum stimulation, reduced serum-mediated SRE activity. Collectively, these data reveal novel roles for the NH(2) terminus of MKP-1 in nuclear targeting and transcriptional regulation.

PMID:
15899879
PMCID:
PMC1140620
DOI:
10.1128/MCB.25.11.4792-4803.2005
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center