Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2005 Mar 1;279(1):58-72.

TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma.

Author information

1
The Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard 310, MCLM, Birmingham, AL 35294, USA.

Abstract

Transforming growth factor-beta (TGF-beta) is thought to regulate ductal and lobuloalveolar development as well as involution in the mammary gland. In an attempt to understand the role TGF-beta plays during normal mammary gland development, and ultimately cancer, we previously generated transgenic mice that express a dominant-negative TGF-beta type II receptor under control of the metallothionine promoter (MT-DNIIR). Upon stimulation with zinc sulfate, the transgene was expressed in the mammary stroma and resulted in an increase in ductal side branching. In this study, mammary gland transplantation experiments confirm that the increase in side branching observed was due to DNIIR activity in the stroma. Development during puberty through the end buds was also accelerated. Cbl is a multifunctional intracellular adaptor protein that regulates receptor tyrosine kinase ubiquitination and downregulation. Mice with a targeted disruption of the c-Cbl gene displayed increased side branching similar to that observed in MT-DNIIR mice; however, end bud development during puberty was normal. Transplantation experiments showed that the mammary stroma was responsible for the increased side branching observed in Cbl-null mice. Cbl expression was reduced in mammary glands from DNIIR mice compared to controls and TGF-beta stimulated expression of Cbl in cultures of primary mammary fibroblasts. In addition, both TGF-beta and Cbl regulated platelet-derived growth factor receptor-alpha (PDGFR alpha) expression in vivo and in isolated mammary fibroblasts. The hypothesis that TGF-beta mediates the levels of PDGFR alpha protein via regulation of c-Cbl was tested. We conclude that TGF-beta regulates PDGFR alpha in the mammary stroma via a c-Cbl-independent mechanism. Finally, the effects of PDGF-AA on branching were determined. Treatment in vivo with PDGF-AA did not affect branching making a functional interaction between TGF-beta and PDGF unlikely.

PMID:
15708558
DOI:
10.1016/j.ydbio.2004.11.034
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center