Format

Send to

Choose Destination
J Bioinform Comput Biol. 2004 Dec;2(4):657-68.

Identifying uniformly mutated segments within repeats.

Author information

1
School of Computing Science, Simon Fraser University, Canada. cenk@cs.sfu.ca

Abstract

Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).

PMID:
15617159
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center