Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jun 18;279(25):26475-80. Epub 2004 Apr 8.

Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos.

Author information

1
Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo 160-8582, Japan. matsuo@sc.itc.keio.ac.jp

Abstract

Osteoclasts are specialized macrophages that resorb bone. Mice lacking the AP-1 component c-Fos are osteopetrotic because of a lack of osteoclast differentiation and show an increased number of macrophages. The nature of the critical function of c-Fos in osteoclast differentiation is not known. Microarray analysis revealed that Nfatc1, another key regulator of osteoclastogenesis, was down-regulated in Fos(-/-) osteoclast precursors. Chromatin immunoprecipitation assay showed that c-Fos bound to the Nfatc1 and Acp5 promoters in osteoclasts. In vitro promoter analyses identified nuclear factor of activated T-cells (NFAT)/AP-1 sites in the osteoclast-specific Acp5 and Calcr promoters. Moreover, in Fos(-/-) precursors gene transfer of an active form of NFAT restored transcription of osteoclast-specific genes in the presence of receptor activator of the NF-kappaB ligand (RANKL), rescuing bone resorption. In the absence of RANKL, however, Fos(-/-) precursors were insensitive to NFAT-induced osteoclastogenesis unlike wild-type precursors. These data indicate that lack of Nfatc1 expression is the cause of the differentiation block in Fos(-/-) osteoclast precursors and that transcriptional induction of Nfatc1 is a major function of c-Fos in osteoclast differentiation.

PMID:
15073183
DOI:
10.1074/jbc.M313973200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center