Send to

Choose Destination
J Eukaryot Microbiol. 2003 Nov-Dec;50(6):403-8.

Expression of GFP-actin leads to failure of nuclear elongation and cytokinesis in Tetrahymena thermophila.

Author information

Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, USA.


Green fluorescent protein (GFP)-tagged actin was used to investigate the distribution and function of actin in Tetrahymena. A strain that expresses both GFP-actin and endogenous actin was developed by transformation of Tetrahymena thermophila with a ribosomal DNA-based replicative vector. Confocal microscopy of living cells and immunogold electron microscopy confirmed localization of GFP-actin to basal bodies and the contractile ring. Incorporation of the fusion protein into these and other actin-related structures correlated with severe impairment of macronuclear elongation and cytokinesis. At 30 degrees C macronuclear elongation failed to occur in 25% of the transformants despite completion of micronuclear division. At 20 degrees C macronuclear elongation failed to occur in 2% of the population. Arrest of cytokinesis coincided with failure of macronuclear elongation. Arrested cells developed into homopolar doublets with two sets of oral structures. This study indicates a requirement for actin in nuclear elongation and cytokinesis. Although GFP-actin can interfere with the functioning of actin-containing structures, the GFP-actin transformant strain can be used to monitor actin distribution and dynamics and is therefore an important new tool for further studies of Tetrahymena actin.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center