Send to

Choose Destination
Gastroenterology. 2004 Jan;126(1):148-58.

Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor.

Author information

Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA.



Polyamines are essential for the normal postnatal development, maintenance, and function of gastrointestinal epithelia. The extracellular Ca(2+) (Ca(2+)(o)/nutrient)-sensing receptor is expressed on both luminal and basolateral membranes of colonocytes, and, in other cell systems, this receptor has been shown to respond to polyamines. Thus, the Ca(2+)-sensing receptor could provide a mechanism for modulation of colonocyte function by dietary and systemic extracellular polyamines. In the present study, we investigated the interaction of polyamines, particularly spermine, and extracellular Ca(2+) on second messenger generation by, and on function of, rat distal colonic crypts.


Calcium-sensing receptor activation was assessed in colonic epithelial cells and intact crypts freshly isolated from distal colon by monitoring intracellular IP(3) and Ca(2+) accumulation using radioimmunoassay and Fluo-3 fluorometry, respectively. Interactions of extracellular Ca(2+) and spermine on regulation of both basal and forskolin-stimulated fluid transport were measured in crypts microperfused in vitro.


Polyamine (spermine > spermidine > putrescine)-mediated enhancement of intracellular D-myo-inositol 1,4,5-trisphosphate (IP(3)) and Ca(2+) accumulation required extracellular Ca(2+), and the EC(50) for extracellular Ca(2+)-mediated activation of the calcium-sensing receptor was reduced by polyamines. Extracellular spermine modulated both basal and forskolin-stimulated fluid secretion in perfused colonic crypts, and the EC(50) for spermine-induced reduction in forskolin-stimulated fluid secretion was inversely dependent on extracellular Ca(2+) (Ca(2+)(o)).


The interactions of extracellular Ca(2+) and polyamines on second messenger accumulation and fluid secretion support a role for the luminal and basolateral calcium-sensing receptors in mediating some of the effects of polyamines on distal colonic epithelial cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center