Send to

Choose Destination
J Biol Chem. 2003 Feb 28;278(9):7310-9. Epub 2002 Dec 6.

Tracking the putative biosynthetic precursors of oxygenated mycolates of Mycobacterium tuberculosis. Structural analysis of fatty acids of a mutant strain deviod of methoxy- and ketomycolates.

Author information

Département de Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie Structurale du CNRS et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France.


Disruption of the mma4 gene (renamed hma) of Mycobacterium tuberculosis has yielded a mutant strain defective in the synthesis of both keto- and methoxymycolates, with an altered cell-wall permeability to small molecules and a decreased virulence in the mouse model of infection (Dubnau, E., Chan, J., Raynaud, C., Mohan, V. P., Lanéelle, M. A., Yu, K., Quémard, A., Smith, I., and Daffé, M. (2000) Mol. Microbiol. 36, 630-637). Assuming that the mutant would accumulate the putative precursors of the oxygenated mycolates of M. tuberculosis, a detailed structural analysis of mycolates from the hma-inactivated strain was performed using a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, proton NMR spectroscopy, and chemical degradation techniques. These consisted most exclusively of alpha-mycolates, composed of equal amounts of C(76)-C(82) dicyclopropanated (alpha(1)) and of C(77)-C(79) monoethylenic monocyclopropanated (alpha(2)) mycolates, the double bond being located at the "distal" position. In addition, small amounts of cis-epoxymycolates, structurally related to alpha(2)-mycolates, was produced by the mutant strain. Complementation of the hma-inactivated mutant with the wild-type gene resulted in the disappearance of the newly identified mycolates and the production of keto- and methoxymycolates of M. tuberculosis. Introduction of the hma gene in Mycobacterium smegmatis led to the lowering of diethylenic alpha mycolates of the recipient strain and the production of keto- and hydroxymycolates. These data indicate that long-chain ethylenic compounds may be the precursors of the oxygenated mycolates of M. tuberculosis. Because the lack of production of several methyltransferases involved in the biosynthesis of mycolates is known to decrease the virulence of the tubercle bacillus, the identification of the substrates of these enzymes should help in the design of inhibitors of the growth of M. tuberculosis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center