Format

Send to

Choose Destination
See comment in PubMed Commons below
Microsc Res Tech. 2002 Aug 15;58(4):365-75.

Presynaptic inhibition of olfactory receptor neurons in crustaceans.

Author information

  • 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. matt.wachowiak@yale.edu

Abstract

Presynaptic inhibition of transmitter release from primary sensory afferents is a common strategy for regulating sensory input to the arthropod central nervous system. In the olfactory system, presynaptic inhibition of olfactory receptor neurons has been long suspected, but until recently could not be demonstrated directly because of the difficulty in recording from the afferent nerve terminals. A preparation using the isolated but intact brain of the spiny lobster in combination with voltage-sensitive dye staining has allowed stimulus-evoked responses of olfactory receptor axons to be recorded selectively with optical imaging methods. This approach has provided the first direct physiological evidence for presynaptic inhibition of olfactory receptor neurons. As in other arthropod sensory systems, the cellular mechanism underlying presynaptic afferent inhibition appears to be a reduction of action potential amplitude in the axon terminal. In the spiny lobster, two inhibitory transmitters, GABA and histamine, can independently mediate presynaptic inhibition. GABA- and histaminergic interneurons in the lobster olfactory lobe (the target of olfactory receptor neurons) constitute dual, functionally distinct inhibitory pathways that are likely to play different roles in regulating primary olfactory input to the CNS. Presynaptic inhibition in the vertebrate olfactory system is also mediated by dual inhibitory pathways, but via a different cellular mechanism. Thus, it is possible that presynaptic inhibition of primary olfactory afferents evolved independently in vertebrates and invertebrates to fill a common, fundamental role in processing olfactory information.

PMID:
12214303
DOI:
10.1002/jemt.10144
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center