Send to

Choose Destination
Insect Biochem Mol Biol. 2002 Sep;32(9):1045-53.

Identification of major soluble salivary gland proteins in teneral Glossina morsitans morsitans.

Author information

Department of Biochemistry and Microbiology, Petch Building, University of Victoria, Victoria, BC, Canada V8W 3P6.


Salivary glands of tsetse flies (Diptera: Glossinidiae) contain molecules that are involved in preventing blood clotting during feeding as well as molecules thought to be intimately associated with trypanosome development and maturation. Here we present a protein microchemical analysis of the major soluble proteins of the salivary glands of Glossina morsitans morsitans, an important vector of African trypanosomes. Differential solubilization of salivary proteins was followed by reverse-phase, high-performance liquid chromatography (HPLC) and analysis of fractions by 1-D gel electrophoresis to reveal four major proteins. Each protein was subjected to amino acid microanalysis and N-terminal microsequencing. A protein chemical approach using high-resolution 2-D gel electrophoresis and mass spectrometry was also used to identify the salivary proteins. Matrix-assisted, laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and quadrupole time-of-flight (Q-TOF) tandem mass spectrometry methods were used for peptide mass mapping and sequencing, respectively. Sequence information and peptide mass maps queried against the NCBI non-redundant database confirmed the identity of the first protein as tsetse salivary gland growth factor-1 (TSGF-1). Two proteins with no known function were identified as tsetse salivary gland protein 1 (Tsal 1) and tsetse salivary gland protein 2 (Tsal 2). The fourth protein was identified as Tsetse antigen-5 (TAg-5), which is a member of a large family of anti-haemostatic proteins. The results show that these four proteins are the most abundant soluble gene products present in salivary glands of teneral G. m. morsitans. We discuss the possible functions of these major proteins in cyclical transmission of African trypanosomes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center