Format

Send to

Choose Destination
Mol Cell Biochem. 2002 Jan;230(1-2):149-58.

Guanylyl cyclases in unicellular organisms.

Author information

1
Abteilung Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Germany.

Abstract

Guanylyl cyclases in eukaryotic unicells were biochemically investigated in the ciliates Paramecium and Tetrahymena, in the malaria parasite Plasmodium and in the ameboid Dictyostelium. In ciliates guanylyl cyclase activity is calcium-regulated suggesting a structural kinship to similarly regulated membrane-bound guanylyl cyclases in vertebrates. Yet, cloning of ciliate guanylyl cyclases revealed a novel combination of known modular building blocks. Two cyclase homology domains are inversely arranged in a topology of mammalian adenylyl cyclases, containing two cassettes of six transmembrane spans. In addition the protozoan guanylyl cyclases contain an N-terminal P-type ATPase-like domain. Sequence comparisons indicate a compromised ATPase function. The adopted novel function remains enigmatic to date. The topology of the guanylyl cyclase domain in all protozoans investigated is identical. A recently identified Dictyostelium guanylyl cyclase lacks the N-terminal P-type ATPase domain. The close functional relation of Paramecium guanylyl cyclases to mammalian adenylyl cyclases has been established by heterologous expression, respective point mutations and a series of active mammalian adenylyl cyclase/ Paramecium guanylyl cyclase chimeras. The unique structure of protozoan guanylyl cyclases suggests that unexpectedly they do not share a common guanylyl cyclase ancestor with their vertebrate congeners but probably originated from an ancestral mammalian-type adenylyl cyclase.

PMID:
11952090
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center