Send to

Choose Destination
See comment in PubMed Commons below
Proc AMIA Symp. 2001:339-43.

A knowledge model for the interpretation and visualization of NLP-parsed discharged summaries.

Author information

Medical Informatics, Columbia University, New York, NY, USA.


At our institution, a Natural Language Processing (NLP) tool called MedLEE is used on a daily basis to parse medical texts including complete discharge summaries. MedLEE transforms written text into a generic structured format, which preserves the richness of the underlying natural language expressions by the use of concept modifiers (like change, certainty, degree and status). As a tradeoff, extraction of application-specific medical information is difficult without a clear understanding of how these modifiers combine. We report on a knowledge model for MedLEE modifiers that is helpful for a high level interpretation of NLP data and is used for the generation of two distinct views on NLP-parsed discharge summaries: A physician view offering a condensed overview of the severity of patient problems and a data mining view featuring binary problem states useful for machine learning.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center