Send to

Choose Destination
J Med Chem. 2000 Apr 6;43(7):1413-7.

Inhibition of protein kinase C(alpha) by dequalinium analogues: dependence on linker length and geometry.

Author information

Department of Chemistry and Biochemistry, Graduate School and University Center, and Queens College of The City University of New York, Flushing, New York 11367, USA.


Analogues of a bipartite compound, dequalinium (DECA) (quinolinium, 1,1'-(1,10-decanediyl)bis(4-amino-2-methyl diiodide)), were tested for inhibition of protein kinase C(alpha) (PKC(alpha)). In vitro assays of monomeric and dimeric analogues support a model in which DECA inhibits PKC(alpha) by an obligatory two-point contact, a unique mechanism among PKC inhibitors. The presence of unsaturation in the center of the C(10)-alkyl linker produced geometric isomers with different inhibitory potencies: cis IC(50) = 52 +/- 12 microM and trans IC(50) = 12 +/- 3 microM, where the trans isomer was equipotent to that of the saturated C(10)-DECA. DECA analogues with longer, saturated linkers (C(12), C(14), or C(16)) exhibited enhanced inhibitory potencies which reached a plateau with the C(14)-linker (IC(50) = 2.6 +/- 0.2 microM). Metastatic melanoma cells treated with 250 nM C(12)-, C(14)-, or C(16)-DECA and irradiated with long-wave UV light (which causes irreversible inhibition of PKC(alpha) by DECA) confirmed the linker-dependent inhibition of intracellular PKC(alpha) activity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center