Send to

Choose Destination

See 1 citation found using an alternative search:

J Viral Hepat. 2010 Dec;17(12):825-33. doi: 10.1111/j.1365-2893.2010.01348.x. Epub 2010 Aug 15.

A perspective on modelling hepatitis C virus infection.

Author information

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.


By mathematically describing early hepatitis C virus (HCV) RNA decay after initiation of interferon (IFN)-based antiviral therapy, crucial parameters of the in vivo viral kinetics have been estimated, such as the rate of production and clearance of free virus, and the rate of loss of infected cells. Furthermore, by suggesting mechanisms of action for IFN and ribavirin mathematical modelling has provided a means for evaluating and optimizing treatment strategies. Here, we review recent modelling developments for understanding complex viral kinetics patterns, such as triphasic HCV RNA declines and viral rebounds observed in patients treated with pegylated interferon and ribavirin. Moreover, we discuss new modelling approaches developed to interpret the viral kinetics observed in clinical trials with direct-acting antiviral agents, which induce a rapid decline of wild-type virus but also engender a higher risk for emergence of drug-resistant variants. Lastly, as in vitro systems have allowed a better characterization of the virus lifecycle, we discuss new modelling approaches that combine the intracellular and the extracellular viral dynamics.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center