Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 338

1.

NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity.

Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R.

J Alzheimers Dis. 2018 Aug 27. doi: 10.3233/JAD-180668. [Epub ahead of print]

PMID:
30175978
2.

Monitoring of Glutamate-Induced Excitotoxicity by Mitochondrial Oxygen Consumption.

Kumagai A, Sasaki T, Matsuoka K, Abe M, Tabata T, Itoh Y, Fuchino H, Wugangerile S, Suga M, Yamaguchi T, Kawahara H, Nagaoka Y, Kawabata K, Furue MK, Takemori H.

Synapse. 2018 Aug 18. doi: 10.1002/syn.22067. [Epub ahead of print]

PMID:
30120794
3.

CYP46A1 protects against NMDA-mediated excitotoxicity in Huntington's disease: Analysis of lipid raft content.

Boussicault L, Kacher R, Lamazière A, Vanhoutte P, Caboche J, Betuing S, Potier MC.

Biochimie. 2018 Aug 11. pii: S0300-9084(18)30214-1. doi: 10.1016/j.biochi.2018.07.019. [Epub ahead of print]

PMID:
30107216
4.
5.

Glutamatergic nervous system degeneration in a C. elegans TauA152T tauopathy model involves pathways of excitotoxicity and Ca2+ dysregulation.

Choudhary B, Mandelkow E, Mandelkow EM, Pir GJ.

Neurobiol Dis. 2018 Sep;117:189-202. doi: 10.1016/j.nbd.2018.06.005. Epub 2018 Jun 9.

PMID:
29894752
6.

Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons.

Ghezzi F, Monni L, Nistri A.

J Physiol. 2018 Jul;596(13):2611-2629. doi: 10.1113/JP275906. Epub 2018 May 30.

PMID:
29736957
7.

Mesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF.

Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L.

Int J Mol Sci. 2018 Feb 25;19(3). pii: E651. doi: 10.3390/ijms19030651.

8.

A Novel Tetramethylpyrazine Derivative Prophylactically Protects against Glutamate-Induced Excitotoxicity in Primary Neurons through the Blockage of N-Methyl-D-aspartate Receptor.

Hu S, Hu H, Mak S, Cui G, Lee M, Shan L, Wang Y, Lin H, Zhang Z, Han Y.

Front Pharmacol. 2018 Feb 12;9:73. doi: 10.3389/fphar.2018.00073. eCollection 2018.

9.

Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications.

Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A.

J Psychopharmacol. 2018 Mar;32(3):265-275. doi: 10.1177/0269881118754680. Epub 2018 Feb 15.

PMID:
29444621
10.

Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity.

Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK.

J Neurosci Res. 2018 Mar;96(3):391-406. doi: 10.1002/jnr.24153. Epub 2017 Nov 29.

PMID:
29193273
11.

Propofol Protects Rat Hypoglossal Motoneurons in an In Vitro Model of Excitotoxicity by Boosting GABAergic Inhibition and Reducing Oxidative Stress.

Ghezzi F, Monni L, Corsini S, Rauti R, Nistri A.

Neuroscience. 2017 Dec 26;367:15-33. doi: 10.1016/j.neuroscience.2017.10.019. Epub 2017 Oct 22.

PMID:
29069620
12.

Synaptic Activity Protects Neurons Against Calcium-Mediated Oxidation and Contraction of Mitochondria During Excitotoxicity.

Depp C, Bas-Orth C, Schroeder L, Hellwig A, Bading H.

Antioxid Redox Signal. 2017 Nov 14. doi: 10.1089/ars.2017.7092. [Epub ahead of print]

PMID:
28990420
13.

Olfactory function in an excitotoxic model for secondary neuronal degeneration: Role of dopaminergic interneurons.

Marin C, Laxe S, Langdon C, Berenguer J, Lehrer E, Mariño-Sánchez F, Alobid I, Bernabeu M, Mullol J.

Neuroscience. 2017 Nov 19;364:28-44. doi: 10.1016/j.neuroscience.2017.09.008. Epub 2017 Sep 14.

PMID:
28918258
14.

Tau exacerbates excitotoxic brain damage in an animal model of stroke.

Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J, Lee WS, Müller J, Parmar J, Jonquieres GV, Stefen H, Guccione E, Fath T, Housley GD, Klugmann M, Ke YD, Ittner LM.

Nat Commun. 2017 Sep 7;8(1):473. doi: 10.1038/s41467-017-00618-0.

15.

Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity.

Sugiyama K, Aida T, Nomura M, Takayanagi R, Zeilhofer HU, Tanaka K.

J Neurosci. 2017 Sep 6;37(36):8830-8844. doi: 10.1523/JNEUROSCI.0730-17.2017. Epub 2017 Aug 16.

16.

Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture.

Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L.

Mol Neurodegener. 2017 May 19;12(1):41. doi: 10.1186/s13024-017-0176-x.

17.

Ecdysterones from Rhaponticum carthamoides (Willd.) Iljin reduce hippocampal excitotoxic cell loss and upregulate mTOR signaling in rats.

Wu J, Gao L, Shang L, Wang G, Wei N, Chu T, Chen S, Zhang Y, Huang J, Wang J, Lin R.

Fitoterapia. 2017 Jun;119:158-167. doi: 10.1016/j.fitote.2017.03.015. Epub 2017 Apr 2.

PMID:
28373010
18.

Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS.

Budni J, Molz S, Dal-Cim T, Martín-de-Saavedra MD, Egea J, Lopéz MG, Tasca CI, Rodrigues ALS.

Mol Neurobiol. 2018 Feb;55(2):1580-1589. doi: 10.1007/s12035-017-0425-6. Epub 2017 Feb 10.

PMID:
28185129
19.

Neuroprotective effects of intrastriatal injection of rapamycin in a mouse model of excitotoxicity induced by quinolinic acid.

Saliba SW, Vieira EL, Santos RP, Candelario-Jalil E, Fiebich BL, Vieira LB, Teixeira AL, de Oliveira AC.

J Neuroinflammation. 2017 Jan 31;14(1):25. doi: 10.1186/s12974-017-0793-x.

20.

ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

Mazzone GL, Veeraraghavan P, Gonzalez-Inchauspe C, Nistri A, Uchitel OD.

Neuroscience. 2017 Feb 20;343:398-410. doi: 10.1016/j.neuroscience.2016.12.008. Epub 2016 Dec 19.

PMID:
28003157

Supplemental Content

Loading ...
Support Center