Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 349

1.

Activation of G-Protein-Coupled Receptor 30 Protects Neurons against Excitotoxicity through Inhibiting Excessive Autophagy Induced by Glutamate.

Yue J, Wang XS, Feng B, Hu LN, Yang LK, Lu L, Zhang K, Wang YT, Liu SB.

ACS Chem Neurosci. 2019 Oct 4. doi: 10.1021/acschemneuro.9b00287. [Epub ahead of print]

PMID:
31545891
2.

Site-specific phosphorylation of Fbxw7 by Cdk5/p25 and its resulting decreased stability are linked to glutamate-induced excitotoxicity.

Ko YU, Kim C, Lee J, Kim D, Kim Y, Yun N, Oh YJ.

Cell Death Dis. 2019 Aug 2;10(8):579. doi: 10.1038/s41419-019-1818-4.

3.

Neuroprotective effect of catechins derivatives isolated from Anhua dark tea on NMDA-induced excitotoxicity in SH-SY5Y cells.

Liu J, Fan Y, Kim D, Zhong T, Yi P, Fan C, Wang A, Yang X, Lee S, Ren X, Xu Y.

Fitoterapia. 2019 Sep;137:104240. doi: 10.1016/j.fitote.2019.104240. Epub 2019 Jun 12.

PMID:
31201887
4.

Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates.

Lavisse S, Williams S, Lecourtois S, van Camp N, Guillermier M, Gipchtein P, Jan C, Goutal S, Eymin L, Valette J, Delzescaux T, Perrier AL, Hantraye P, Aron Badin R.

Neurobiol Dis. 2019 Oct;130:104484. doi: 10.1016/j.nbd.2019.104484. Epub 2019 May 24.

PMID:
31132407
5.

The RNA-binding protein FUS/TLS undergoes calcium-mediated nuclear egress during excitotoxic stress and is required for GRIA2 mRNA processing.

Tischbein M, Baron DM, Lin YC, Gall KV, Landers JE, Fallini C, Bosco DA.

J Biol Chem. 2019 Jun 28;294(26):10194-10210. doi: 10.1074/jbc.RA118.005933. Epub 2019 May 15.

PMID:
31092554
6.

Widespread Striatal Delivery of GDNF from Encapsulated Cells Prevents the Anatomical and Functional Consequences of Excitotoxicity.

Emerich DF, Kordower JH, Chu Y, Thanos C, Bintz B, Paolone G, Wahlberg LU.

Neural Plast. 2019 Mar 11;2019:6286197. doi: 10.1155/2019/6286197. eCollection 2019.

7.

Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity.

Foley TD.

Cell Mol Neurobiol. 2019 Jul;39(5):577-590. doi: 10.1007/s10571-019-00672-w. Epub 2019 Mar 23. Review.

PMID:
30904976
8.

A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity.

Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S.

Front Neural Circuits. 2019 Feb 25;13:11. doi: 10.3389/fncir.2019.00011. eCollection 2019.

9.

Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration.

Pichavaram P, Palani CD, Patel C, Xu Z, Shosha E, Fouda AY, Caldwell RB, Narayanan SP.

Front Neurosci. 2019 Jan 10;12:956. doi: 10.3389/fnins.2018.00956. eCollection 2018.

10.

Hydroxyurea attenuates oxidative, metabolic, and excitotoxic stress in rat hippocampal neurons and improves spatial memory in a mouse model of Alzheimer's disease.

Brose RD, Lehrmann E, Zhang Y, Reeves RH, Smith KD, Mattson MP.

Neurobiol Aging. 2018 Dec;72:121-133. doi: 10.1016/j.neurobiolaging.2018.08.021. Epub 2018 Aug 29.

PMID:
30245242
11.

NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity.

Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R.

J Alzheimers Dis. 2018;65(4):1469-1483. doi: 10.3233/JAD-180668.

PMID:
30175978
12.

Monitoring of glutamate-induced excitotoxicity by mitochondrial oxygen consumption.

Kumagai A, Sasaki T, Matsuoka K, Abe M, Tabata T, Itoh Y, Fuchino H, Wugangerile S, Suga M, Yamaguchi T, Kawahara H, Nagaoka Y, Kawabata K, Furue MK, Takemori H.

Synapse. 2019 Jan;73(1):e22067. doi: 10.1002/syn.22067. Epub 2018 Sep 6.

PMID:
30120794
13.

CYP46A1 protects against NMDA-mediated excitotoxicity in Huntington's disease: Analysis of lipid raft content.

Boussicault L, Kacher R, Lamazière A, Vanhoutte P, Caboche J, Betuing S, Potier MC.

Biochimie. 2018 Oct;153:70-79. doi: 10.1016/j.biochi.2018.07.019. Epub 2018 Aug 11.

PMID:
30107216
14.
15.

Glutamatergic nervous system degeneration in a C. elegans TauA152T tauopathy model involves pathways of excitotoxicity and Ca2+ dysregulation.

Choudhary B, Mandelkow E, Mandelkow EM, Pir GJ.

Neurobiol Dis. 2018 Sep;117:189-202. doi: 10.1016/j.nbd.2018.06.005. Epub 2018 Jun 9.

PMID:
29894752
16.

Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons.

Ghezzi F, Monni L, Nistri A.

J Physiol. 2018 Jul;596(13):2611-2629. doi: 10.1113/JP275906. Epub 2018 May 30.

17.

Elevated MeCP2 in Mice Causes Neurodegeneration Involving Tau Dysregulation and Excitotoxicity: Implications for the Understanding and Treatment of MeCP2 Triplication Syndrome.

Montgomery KR, Louis Sam Titus ASC, Wang L, D'Mello SR.

Mol Neurobiol. 2018 Dec;55(12):9057-9074. doi: 10.1007/s12035-018-1046-4. Epub 2018 Apr 10.

18.

Mesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF.

Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L.

Int J Mol Sci. 2018 Feb 25;19(3). pii: E651. doi: 10.3390/ijms19030651.

19.

A Novel Tetramethylpyrazine Derivative Prophylactically Protects against Glutamate-Induced Excitotoxicity in Primary Neurons through the Blockage of N-Methyl-D-aspartate Receptor.

Hu S, Hu H, Mak S, Cui G, Lee M, Shan L, Wang Y, Lin H, Zhang Z, Han Y.

Front Pharmacol. 2018 Feb 12;9:73. doi: 10.3389/fphar.2018.00073. eCollection 2018.

20.

Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications.

Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A.

J Psychopharmacol. 2018 Mar;32(3):265-275. doi: 10.1177/0269881118754680. Epub 2018 Feb 15.

PMID:
29444621

Supplemental Content

Loading ...
Support Center