Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 60

1.

Function, evolution, and structure of J-domain proteins.

Kampinga HH, Andreasson C, Barducci A, Cheetham ME, Cyr D, Emanuelsson C, Genevaux P, Gestwicki JE, Goloubinoff P, Huerta-Cepas J, Kirstein J, Liberek K, Mayer MP, Nagata K, Nillegoda NB, Pulido P, Ramos C, De Los Rios P, Rospert S, Rosenzweig R, Sahi C, Taipale M, Tomiczek B, Ushioda R, Young JC, Zimmermann R, Zylicz A, Zylicz M, Craig EA, Marszalek J.

Cell Stress Chaperones. 2019 Jan;24(1):7-15. doi: 10.1007/s12192-018-0948-4. Epub 2018 Nov 26. Review.

PMID:
30478692
2.

Hsp70 at the membrane: driving protein translocation.

Craig EA.

BMC Biol. 2018 Jan 17;16(1):11. doi: 10.1186/s12915-017-0474-3. Review.

3.

Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

Schilke BA, Ciesielski SJ, Ziegelhoffer T, Kamiya E, Tonelli M, Lee W, Cornilescu G, Hines JK, Markley JL, Craig EA.

PLoS Genet. 2017 Oct 30;13(10):e1007084. doi: 10.1371/journal.pgen.1007084. eCollection 2017 Oct.

4.

Fe-S Cluster Hsp70 Chaperones: The ATPase Cycle and Protein Interactions.

Dutkiewicz R, Nowak M, Craig EA, Marszalek J.

Methods Enzymol. 2017;595:161-184. doi: 10.1016/bs.mie.2017.07.004. Epub 2017 Aug 21. Review.

5.

Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23.

Ting SY, Yan NL, Schilke BA, Craig EA.

Elife. 2017 Apr 25;6. pii: e23609. doi: 10.7554/eLife.23609.

6.

How Do J-Proteins Get Hsp70 to Do So Many Different Things?

Craig EA, Marszalek J.

Trends Biochem Sci. 2017 May;42(5):355-368. doi: 10.1016/j.tibs.2017.02.007. Epub 2017 Mar 15. Review.

7.

Dual interaction of the Hsp70 J-protein cochaperone Zuotin with the 40S and 60S ribosomal subunits.

Lee K, Sharma R, Shrestha OK, Bingman CA, Craig EA.

Nat Struct Mol Biol. 2016 Nov;23(11):1003-1010. doi: 10.1038/nsmb.3299. Epub 2016 Sep 26.

8.

Posttranslational control of the scaffold for Fe-S cluster biogenesis as a compensatory regulatory mechanism.

Ciesielski SJ, Craig EA.

Curr Genet. 2017 Feb;63(1):51-56. doi: 10.1007/s00294-016-0618-y. Epub 2016 May 31. Review.

9.

The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation.

Yonashiro R, Tahara EB, Bengtson MH, Khokhrina M, Lorenz H, Chen KC, Kigoshi-Tansho Y, Savas JN, Yates JR, Kay SA, Craig EA, Mogk A, Bukau B, Joazeiro CA.

Elife. 2016 Mar 4;5:e11794. doi: 10.7554/eLife.11794.

10.

Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe-S cluster biogenesis regulation.

Ciesielski SJ, Schilke B, Marszalek J, Craig EA.

Mol Biol Cell. 2016 Apr 1;27(7):1060-8. doi: 10.1091/mbc.E15-12-0815. Epub 2016 Feb 3.

11.

Iron-Sulfur Cluster Biogenesis Chaperones: Evidence for Emergence of Mutational Robustness of a Highly Specific Protein-Protein Interaction.

Delewski W, Paterkiewicz B, Manicki M, Schilke B, Tomiczek B, Ciesielski SJ, Nierzwicki L, Czub J, Dutkiewicz R, Craig EA, Marszalek J.

Mol Biol Evol. 2016 Mar;33(3):643-56. doi: 10.1093/molbev/msv254. Epub 2015 Nov 5.

12.

Functionality of Class A and Class B J-protein co-chaperones with Hsp70.

Yu HY, Ziegelhoffer T, Craig EA.

FEBS Lett. 2015 Sep 14;589(19 Pt B):2825-30. doi: 10.1016/j.febslet.2015.07.040. Epub 2015 Aug 3.

13.

Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

Yu HY, Ziegelhoffer T, Osipiuk J, Ciesielski SJ, Baranowski M, Zhou M, Joachimiak A, Craig EA.

J Mol Biol. 2015 Apr 10;427(7):1632-43. doi: 10.1016/j.jmb.2015.02.007. Epub 2015 Feb 14.

14.

A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with the ribosome.

Kaschner LA, Sharma R, Shrestha OK, Meyer AE, Craig EA.

Biochim Biophys Acta. 2015 May;1853(5):1035-45. doi: 10.1016/j.bbamcr.2015.01.014. Epub 2015 Jan 30.

15.

Sequential duplications of an ancient member of the DnaJ-family expanded the functional chaperone network in the eukaryotic cytosol.

Sahi C, Kominek J, Ziegelhoffer T, Yu HY, Baranowski M, Marszalek J, Craig EA.

Mol Biol Evol. 2013 May;30(5):985-98. doi: 10.1093/molbev/mst008. Epub 2013 Jan 16.

16.

Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements.

Hines JK, Higurashi T, Srinivasan M, Craig EA.

Prion. 2011 Oct-Dec;5(4):238-44. doi: 10.4161/pri.17818. Epub 2011 Oct 1.

17.

Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor.

Pais JE, Schilke B, Craig EA.

Mol Biol Cell. 2011 Dec;22(24):4740-9. doi: 10.1091/mbc.E11-08-0715. Epub 2011 Oct 26.

18.

The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity.

Hines JK, Craig EA.

Prion. 2011 Jul-Sep;5(3):164-8. doi: 10.4161/pri.5.3.16895. Epub 2011 Jul 1.

19.

[SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity.

Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA.

PLoS Genet. 2011 Feb;7(2):e1001309. doi: 10.1371/journal.pgen.1001309. Epub 2011 Feb 17. Erratum in: PLoS Genet. 2011 Feb;7(2). doi: 10.1371/annotation/65a80750-95f9-40a1-a509-64ee5febbaa3.

20.

Ancient gene duplication provided a key molecular step for anaerobic growth of Baker's yeast.

Hayashi M, Schilke B, Marszalek J, Williams B, Craig EA.

Mol Biol Evol. 2011 Jul;28(7):2005-17. doi: 10.1093/molbev/msr019. Epub 2011 Jan 18.

Supplemental Content

Loading ...
Support Center