Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 51

1.

Molecular mechanism of inhibition of acid ceramidase by carmofur.

Dementiev A, Joachimiak A, Nguyen H, Gorelik A, Illes K, Shabani S, Gelsomino M, Ahn EE, Nagar B, Doan N.

J Med Chem. 2018 Dec 7. doi: 10.1021/acs.jmedchem.8b01723. [Epub ahead of print]

PMID:
30525581
2.

Molecular mechanism of activation of the immunoregulatory amidase NAAA.

Gorelik A, Gebai A, Illes K, Piomelli D, Nagar B.

Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10032-E10040. doi: 10.1073/pnas.1811759115. Epub 2018 Oct 9.

PMID:
30301806
3.

Fully printed one-step biosensing device using graphene/AuNPs composite.

Nagar B, Balsells M, de la Escosura-Muñiz A, Gomez-Romero P, Merkoçi A.

Biosens Bioelectron. 2018 Sep 21. pii: S0956-5663(18)30771-1. doi: 10.1016/j.bios.2018.09.073. [Epub ahead of print]

PMID:
30279057
4.

Crystal structure of saposin D in an open conformation.

Gebai A, Gorelik A, Nagar B.

J Struct Biol. 2018 Nov;204(2):145-150. doi: 10.1016/j.jsb.2018.07.011. Epub 2018 Jul 17.

PMID:
30026085
5.

Structural Analysis of the Bacterial Effector AvrA Identifies a Critical Helix Involved in Substrate Recognition.

Labriola JM, Zhou Y, Nagar B.

Biochemistry. 2018 Aug 21;57(33):4985-4996. doi: 10.1021/acs.biochem.8b00512. Epub 2018 Aug 3.

PMID:
30025209
6.

Design and Fabrication of Printed Paper-Based Hybrid Micro-Supercapacitor by using Graphene and Redox-Active Electrolyte.

Nagar B, Dubal DP, Pires L, Merkoçi A, Gómez-Romero P.

ChemSusChem. 2018 Jun 11;11(11):1849-1856. doi: 10.1002/cssc.201800426. Epub 2018 May 22.

PMID:
29786963
7.

Structural basis for nucleotide recognition by the ectoenzyme CD203c.

Gorelik A, Randriamihaja A, Illes K, Nagar B.

FEBS J. 2018 Jul;285(13):2481-2494. doi: 10.1111/febs.14489. Epub 2018 May 9.

PMID:
29717535
8.

Structural basis for the activation of acid ceramidase.

Gebai A, Gorelik A, Li Z, Illes K, Nagar B.

Nat Commun. 2018 Apr 24;9(1):1621. doi: 10.1038/s41467-018-03844-2.

9.

Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.

Jayaramulu K, Dubal DP, Nagar B, Ranc V, Tomanec O, Petr M, Datta KKR, Zboril R, Gómez-Romero P, Fischer RA.

Adv Mater. 2018 Apr;30(15):e1705789. doi: 10.1002/adma.201705789. Epub 2018 Mar 8.

PMID:
29516561
10.

Crystal structure of the mammalian lipopolysaccharide detoxifier.

Gorelik A, Illes K, Nagar B.

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E896-E905. doi: 10.1073/pnas.1719834115. Epub 2018 Jan 17.

11.

A key tyrosine substitution restricts nucleotide hydrolysis by the ectoenzyme NPP5.

Gorelik A, Randriamihaja A, Illes K, Nagar B.

FEBS J. 2017 Nov;284(21):3718-3726. doi: 10.1111/febs.14266. Epub 2017 Sep 30.

12.

Structural and Functional Characterization of Plant ARGONAUTE MID Domains.

Frank F, Nagar B.

Methods Mol Biol. 2017;1640:227-239. doi: 10.1007/978-1-4939-7165-7_17.

PMID:
28608347
13.

Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition.

Gorelik A, Liu F, Illes K, Nagar B.

J Biol Chem. 2017 Apr 28;292(17):7087-7094. doi: 10.1074/jbc.M116.769273. Epub 2017 Mar 14.

14.

Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2'-O methylations.

Abbas YM, Laudenbach BT, Martínez-Montero S, Cencic R, Habjan M, Pichlmair A, Damha MJ, Pelletier J, Nagar B.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2106-E2115. doi: 10.1073/pnas.1612444114. Epub 2017 Mar 1.

15.

Crystal Structure of the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3B Provides Insights into Determinants of Substrate Specificity.

Gorelik A, Heinz LX, Illes K, Superti-Furga G, Nagar B.

J Biol Chem. 2016 Nov 11;291(46):24054-24064. Epub 2016 Sep 28.

16.

Crystal structure of mammalian acid sphingomyelinase.

Gorelik A, Illes K, Heinz LX, Superti-Furga G, Nagar B.

Nat Commun. 2016 Jul 20;7:12196. doi: 10.1038/ncomms12196.

17.

Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A.

Gorelik A, Illes K, Superti-Furga G, Nagar B.

J Biol Chem. 2016 Mar 18;291(12):6376-85. doi: 10.1074/jbc.M115.711085. Epub 2016 Jan 20.

18.

DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation.

Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N.

Nucleic Acids Res. 2015 Apr 20;43(7):3764-75. doi: 10.1093/nar/gkv205. Epub 2015 Mar 16.

19.

An immunogenic peptide in the A-box of HMGB1 protein reverses apoptosis-induced tolerance through RAGE receptor.

LeBlanc PM, Doggett TA, Choi J, Hancock MA, Durocher Y, Frank F, Nagar B, Ferguson TA, Saleh M.

J Biol Chem. 2014 Mar 14;289(11):7777-86. doi: 10.1074/jbc.M113.541474. Epub 2014 Jan 28.

20.

Structure of parkin reveals mechanisms for ubiquitin ligase activation.

Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K.

Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.

Supplemental Content

Loading ...
Support Center