Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 35

1.

High fat diet induces PKA and GRK phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, Kim S, Chiamvimonvat N, Xiang YK.

J Physiol. 2016 Dec 16. doi: 10.1113/JP273314. [Epub ahead of print]

PMID:
27983752
2.

Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction.

Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, Tan R, Barbagallo F, West T, Anderson E, Wei W, Abel ED, Xiang YK.

Circulation. 2017 Jan 3;135(1):73-88. doi: 10.1161/CIRCULATIONAHA.116.022281.

PMID:
27815373
3.

A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans.

Zou W, Shen A, Dong X, Tugizova M, Xiang YK, Shen K.

Elife. 2016 Oct 5;5. pii: e18345. doi: 10.7554/eLife.18345.

4.

With or Without Langendorff: A New Method for Adult Myocyte Isolation to Be Tested With Time.

Chen X, O'Connell TD, Xiang YK.

Circ Res. 2016 Sep 30;119(8):888-90. doi: 10.1161/CIRCRESAHA.116.309734. No abstract available.

PMID:
27688302
5.

Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure.

Barbagallo F, Xu B, Reddy GR, West T, Wang Q, Fu Q, Li M, Shi Q, Ginsburg KS, Ferrier W, Isidori AM, Naro F, Patel HH, Bossuyt J, Bers D, Xiang YK.

Circ Res. 2016 Sep 30;119(8):931-43. doi: 10.1161/CIRCRESAHA.116.308964.

PMID:
27576469
6.

Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins.

Skieterska K, Shen A, Clarisse D, Rondou P, Borroto-Escuela DO, Lintermans B, Fuxe K, Xiang YK, Van Craenenbroeck K.

Cell Signal. 2016 Aug;28(8):1001-14. doi: 10.1016/j.cellsig.2016.05.003.

PMID:
27155323
7.

Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the β2 adrenergic receptor.

Patriarchi T, Qian H, Di Biase V, Malik ZA, Chowdhury D, Price JL, Hammes EA, Buonarati OR, Westenbroek RE, Catterall WA, Hofmann F, Xiang YK, Murphy GG, Chen CY, Navedo MF, Hell JW.

EMBO J. 2016 Jun 15;35(12):1330-45. doi: 10.15252/embj.201593409.

PMID:
27103070
8.

Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity.

Zhao H, Shen A, Xiang YK, Corey DP.

PLoS One. 2016 Mar 4;11(3):e0150125. doi: 10.1371/journal.pone.0150125.

9.

Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy.

Wu H, Lee J, Vincent LG, Wang Q, Gu M, Lan F, Churko JM, Sallam KI, Matsa E, Sharma A, Gold JD, Engler AJ, Xiang YK, Bers DM, Wu JC.

Cell Stem Cell. 2015 Jul 2;17(1):89-100. doi: 10.1016/j.stem.2015.04.020.

10.

Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling.

Fu Q, Xiang YK.

Prog Mol Biol Transl Sci. 2015;132:151-88. doi: 10.1016/bs.pmbts.2015.03.008. Review.

PMID:
26055058
11.

Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes.

Isidori AM, Cornacchione M, Barbagallo F, Di Grazia A, Barrios F, Fassina L, Monaco L, Giannetta E, Gianfrilli D, Garofalo S, Zhang X, Chen X, Xiang YK, Lenzi A, Pellegrini M, Naro F.

Cardiovasc Res. 2015 Jun 1;106(3):408-20. doi: 10.1093/cvr/cvv123.

12.

Insulin induces IRS2-dependent and GRK2-mediated β2AR internalization to attenuate βAR signaling in cardiomyocytes.

Fu Q, Xu B, Parikh D, Cervantes D, Xiang YK.

Cell Signal. 2015 Mar;27(3):707-15. doi: 10.1016/j.cellsig.2014.11.018.

13.

A long lasting β1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes.

Fu Q, Kim S, Soto D, De Arcangelis V, DiPilato L, Liu S, Xu B, Shi Q, Zhang J, Xiang YK.

J Biol Chem. 2014 May 23;289(21):14771-81. doi: 10.1074/jbc.M113.542589.

14.

Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.

Fu Q, Xu B, Liu Y, Parikh D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T, Shi Q, Clark RB, Chen X, Abel ED, Xiang YK.

Diabetes. 2014 Aug;63(8):2676-89. doi: 10.2337/db13-1763.

15.

Genetic suppression of β2-adrenergic receptors ameliorates tau pathology in a mouse model of tauopathies.

Wisely EV, Xiang YK, Oddo S.

Hum Mol Genet. 2014 Aug 1;23(15):4024-34. doi: 10.1093/hmg/ddu116.

16.

Biological techniques: Wrapped around the heart.

Clancy CE, Xiang YK.

Nature. 2014 Mar 6;507(7490):43-4. doi: 10.1038/507043a. No abstract available.

PMID:
24598634
17.

Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury.

Kim YA, Kim MY, Yu HY, Mishra SK, Lee JH, Choi KS, Kim JH, Xiang YK, Jung YS.

J Mol Med (Berl). 2013 Nov;91(11):1303-13. doi: 10.1007/s00109-013-1070-9.

PMID:
23948959
18.

SAP97 controls the trafficking and resensitization of the beta-1-adrenergic receptor through its PDZ2 and I3 domains.

Nooh MM, Naren AP, Kim SJ, Xiang YK, Bahouth SW.

PLoS One. 2013 May 16;8(5):e63379. doi: 10.1371/journal.pone.0063379.

19.

Adenylyl cyclase anchoring by a kinase anchor protein AKAP5 (AKAP79/150) is important for postsynaptic β-adrenergic signaling.

Zhang M, Patriarchi T, Stein IS, Qian H, Matt L, Nguyen M, Xiang YK, Hell JW.

J Biol Chem. 2013 Jun 14;288(24):17918-31. doi: 10.1074/jbc.M112.449462.

20.

Compartmentalization of β-adrenergic signals in cardiomyocytes.

Fu Q, Chen X, Xiang YK.

Trends Cardiovasc Med. 2013 Oct;23(7):250-6. doi: 10.1016/j.tcm.2013.02.001. Review.

Items per page

Supplemental Content

Loading ...
Support Center