Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 37

1.

Mathematical modeling of climate change and malaria transmission dynamics: a historical review.

Eikenberry SE, Gumel AB.

J Math Biol. 2018 Apr 24. doi: 10.1007/s00285-018-1229-7. [Epub ahead of print] Review.

PMID:
29691632
2.

Comments on "A Mathematical Study to Control Visceral Leishmaniasis: An Application to South Sudan".

Iboi E, Okuneye K, Sharomi O, Gumel AB.

Bull Math Biol. 2018 Apr;80(4):825-839. doi: 10.1007/s11538-018-0403-9. Epub 2018 Feb 16.

PMID:
29453666
3.

Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: A theoretical analysis.

Pugliese A, Gumel AB, Milner FA, Velasco-Hernandez JX.

Math Biosci Eng. 2018 Feb 1;15(1):125-140. doi: 10.3934/mbe.2018005.

PMID:
29161829
4.

Mathematical analysis of a weather-driven model for the population ecology of mosquitoes.

Okuneye K, Abdelrazec A, Gumel AB.

Math Biosci Eng. 2018 Feb 1;15(1):57-93. doi: 10.3934/mbe.2018003.

PMID:
29161827
5.

Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics.

Abdelrazec A, Gumel AB.

J Math Biol. 2017 May;74(6):1351-1395. doi: 10.1007/s00285-016-1054-9. Epub 2016 Sep 19.

PMID:
27647127
6.

Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics.

Okuneye K, Gumel AB.

Math Biosci. 2017 May;287:72-92. doi: 10.1016/j.mbs.2016.03.013. Epub 2016 Apr 21.

PMID:
27107977
7.

Mathematical analysis of a model for AVL-HIV co-endemicity.

Hussaini N, Lubuma JM, Barley K, Gumel AB.

Math Biosci. 2016 Jan;271:80-95. doi: 10.1016/j.mbs.2015.10.008. Epub 2015 Oct 24.

PMID:
26596715
8.

Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks.

Agusto FB, Teboh-Ewungkem MI, Gumel AB.

BMC Med. 2015 Apr 23;13:96. doi: 10.1186/s12916-015-0318-3.

9.

Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics.

Nazari F, Gumel AB, Elbasha EH.

Math Biosci. 2015 May;263:51-69. doi: 10.1016/j.mbs.2015.02.002. Epub 2015 Feb 14.

PMID:
25686692
10.

Dynamics of Mycobacterium and bovine tuberculosis in a human-buffalo population.

Hassan AS, Garba SM, Gumel AB, Lubuma JM.

Comput Math Methods Med. 2014;2014:912306. doi: 10.1155/2014/912306. Epub 2014 Sep 2.

11.

Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types.

Alsaleh AA, Gumel AB.

Bull Math Biol. 2014 Jul;76(7):1670-726. doi: 10.1007/s11538-014-9972-4. Epub 2014 Jul 18.

PMID:
25033777
12.

Mathematical analysis of an age-structured model for malaria transmission dynamics.

Forouzannia F, Gumel AB.

Math Biosci. 2014 Jan;247:80-94. doi: 10.1016/j.mbs.2013.10.011. Epub 2013 Nov 15.

PMID:
24239674
13.

Dynamics analysis of a multi-strain cholera model with an imperfect vaccine.

Safi MA, Melesse DY, Gumel AB.

Bull Math Biol. 2013 Jul;75(7):1104-37. doi: 10.1007/s11538-013-9845-2. Epub 2013 May 1.

PMID:
23636819
14.

Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains.

Agusto FB, Gumel AB.

Math Biosci. 2013 Jun;243(2):147-62. doi: 10.1016/j.mbs.2013.02.001. Epub 2013 Feb 26.

PMID:
23485554
15.

Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation.

Safi MA, Imran M, Gumel AB.

Theory Biosci. 2012 May;131(1):19-30. doi: 10.1007/s12064-011-0148-6. Epub 2012 Jan 6.

PMID:
22222764
16.

Qualitative assessment of the role of public health education program on HIV transmission dynamics.

Hussaini N, Winter M, Gumel AB.

Math Med Biol. 2011 Sep;28(3):245-70. doi: 10.1093/imammb/dqq009. Epub 2010 May 20.

PMID:
20488880
17.

Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.

Sharomi O, Podder CN, Gumel AB, Mahmud SM, Rubinstein E.

Bull Math Biol. 2011 Mar;73(3):515-48. doi: 10.1007/s11538-010-9538-z. Epub 2010 Apr 9.

PMID:
20379852
18.

Backward bifurcation and optimal control in transmission dynamics of west nile virus.

Blayneh KW, Gumel AB, Lenhart S, Clayton T.

Bull Math Biol. 2010 May;72(4):1006-28. doi: 10.1007/s11538-009-9480-0. Epub 2010 Jan 7.

PMID:
20054714
19.

Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics.

Teboh-Ewungkem MI, Podder CN, Gumel AB.

Bull Math Biol. 2010 Jan;72(1):63-93. doi: 10.1007/s11538-009-9437-3. Epub 2009 Jul 1.

PMID:
19568725
20.

Mathematical analysis of a model for HIV-malaria co-infection.

Mukandavire Z, Gumel AB, Garira W, Tchuenche JM.

Math Biosci Eng. 2009 Apr;6(2):333-62.

PMID:
19364156

Supplemental Content

Loading ...
Support Center