Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 73

1.

Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, Zhao Y, Climente-González H, Chai S, Wang F, Varghese R, Huang M, Liang WW, Wyczalkowski MA, Sengupta S, Li Z, Payne SH, Fenyö D, Miner JH, Walter MJ; Cancer Genome Atlas Research Network, Vincent B, Eyras E, Chen K, Shmulevich I, Chen F, Ding L.

Cell Rep. 2018 Apr 3;23(1):270-281.e3. doi: 10.1016/j.celrep.2018.03.052.

2.

SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data.

Dotu I, Adamson SI, Coleman B, Fournier C, Ricart-Altimiras E, Eyras E, Chuang JH.

PLoS Comput Biol. 2018 Mar 29;14(3):e1006078. doi: 10.1371/journal.pcbi.1006078. eCollection 2018 Mar.

3.

Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors.

Singh B, Trincado JL, Tatlow PJ, Piccolo SR, Eyras E.

Mol Cancer Res. 2018 Jul;16(7):1112-1124. doi: 10.1158/1541-7786.MCR-17-0601. Epub 2018 Mar 28.

PMID:
29592900
4.

SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions.

Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E.

Genome Biol. 2018 Mar 23;19(1):40. doi: 10.1186/s13059-018-1417-1.

5.

Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1.

Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS.

Nat Commun. 2017 Dec 21;8(1):2249. doi: 10.1038/s41467-017-02353-y.

6.

The discovery potential of RNA processing profiles.

Pagès A, Dotu I, Pallarès-Albanell J, Martí E, Guigó R, Eyras E.

Nucleic Acids Res. 2018 Feb 16;46(3):e15. doi: 10.1093/nar/gkx1115.

7.

The Functional Impact of Alternative Splicing in Cancer.

Climente-González H, Porta-Pardo E, Godzik A, Eyras E.

Cell Rep. 2017 Aug 29;20(9):2215-2226. doi: 10.1016/j.celrep.2017.08.012.

8.

IRFinder: assessing the impact of intron retention on mammalian gene expression.

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko JE, Ritchie W.

Genome Biol. 2017 Mar 15;18(1):51. doi: 10.1186/s13059-017-1184-4.

9.

The role of alternative splicing in cancer.

Singh B, Eyras E.

Transcription. 2017 Mar 15;8(2):91-98. doi: 10.1080/21541264.2016.1268245. Epub 2016 Dec 22.

10.

Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers.

Pérez-Guijarro E, Karras P, Cifdaloz M, Martínez-Herranz R, Cañón E, Graña O, Horcajada-Reales C, Alonso-Curbelo D, Calvo TG, Gómez-López G, Bellora N, Riveiro-Falkenbach E, Ortiz-Romero PL, Rodríguez-Peralto JL, Maestre L, Roncador G, de Agustín Asensio JC, Goding CR, Eyras E, Megías D, Méndez R, Soengas MS.

Nat Commun. 2016 Nov 18;7:13418. doi: 10.1038/ncomms13418.

11.

Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum.

Martin S, Bellora N, González-Vallinas J, Irimia M, Chebli K, de Toledo M, Raabe M, Eyras E, Urlaub H, Blencowe BJ, Tazi J.

J Neurochem. 2016 Nov;139(3):349-368. doi: 10.1111/jnc.13768. Epub 2016 Oct 18.

12.

The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development.

Rodor J, FitzPatrick DR, Eyras E, Cáceres JF.

RNA Biol. 2017 Jan 2;14(1):45-57. doi: 10.1080/15476286.2016.1247148. Epub 2016 Oct 20.

13.

The prognostic potential of alternative transcript isoforms across human tumors.

Trincado JL, Sebestyén E, Pagés A, Eyras E.

Genome Med. 2016 Aug 17;8(1):85. doi: 10.1186/s13073-016-0339-3.

14.

The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation.

Rodor J, Pan Q, Blencowe BJ, Eyras E, Cáceres JF.

RNA. 2016 Sep;22(9):1411-26. doi: 10.1261/rna.057158.116. Epub 2016 Jun 30.

15.

The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators.

Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, Rajgor D, Kayikci M, Feltham J, Ule J, Eyras E, Smith CW.

Nucleic Acids Res. 2016 Oct 14;44(18):8933-8950. Epub 2016 Jun 17.

16.

Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks.

Sebestyén E, Singh B, Miñana B, Pagès A, Mateo F, Pujana MA, Valcárcel J, Eyras E.

Genome Res. 2016 Jun;26(6):732-44. doi: 10.1101/gr.199935.115. Epub 2016 Apr 13.

17.

Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing.

Falaleeva M, Pages A, Matuszek Z, Hidmi S, Agranat-Tamir L, Korotkov K, Nevo Y, Eyras E, Sperling R, Stamm S.

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1625-34. doi: 10.1073/pnas.1519292113. Epub 2016 Mar 8.

18.

A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.

Kremsky I, Bellora N, Eyras E.

PLoS One. 2015 Jul 24;10(7):e0132448. doi: 10.1371/journal.pone.0132448. eCollection 2015.

19.

Leveraging transcript quantification for fast computation of alternative splicing profiles.

Alamancos GP, Pagès A, Trincado JL, Bellora N, Eyras E.

RNA. 2015 Sep;21(9):1521-31. doi: 10.1261/rna.051557.115. Epub 2015 Jul 15.

20.

A semi-supervised approach uncovers thousands of intragenic enhancers differentially activated in human cells.

González-Vallinas J, Pagès A, Singh B, Eyras E.

BMC Genomics. 2015 Jul 14;16:523. doi: 10.1186/s12864-015-1704-0.

Supplemental Content

Loading ...
Support Center