Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 143

1.

Stepwise Promoter Melting by Bacterial RNA Polymerase.

Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA.

Mol Cell. 2020 Mar 2. pii: S1097-2765(20)30110-6. doi: 10.1016/j.molcel.2020.02.017. [Epub ahead of print]

PMID:
32160514
2.

E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.

Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA.

Elife. 2019 Dec 16;8. pii: e49375. doi: 10.7554/eLife.49375.

3.

Discovery of Ubonodin, an Antimicrobial Lasso Peptide Active against Members of the Burkholderia cepacia Complex.

Cheung-Lee WL, Parry ME, Zong C, Cartagena AJ, Darst SA, Connell ND, Russo R, Link AJ.

Chembiochem. 2019 Nov 25. doi: 10.1002/cbic.201900707. [Epub ahead of print]

PMID:
31765515
4.

Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.

Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA.

Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.

5.

Mechanisms of Transcriptional Pausing in Bacteria.

Kang JY, Mishanina TV, Landick R, Darst SA.

J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13. Review.

PMID:
31310765
6.

Discovery and structure of the antimicrobial lasso peptide citrocin.

Cheung-Lee WL, Parry ME, Jaramillo Cartagena A, Darst SA, Link AJ.

J Biol Chem. 2019 Apr 26;294(17):6822-6830. doi: 10.1074/jbc.RA118.006494. Epub 2019 Mar 7.

PMID:
30846564
7.

Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.

Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA.

Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.

8.

Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin.

Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA.

Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1273-1278. doi: 10.1073/pnas.1817352116. Epub 2019 Jan 9.

9.

Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism.

Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF.

Nat Commun. 2018 Oct 8;9(1):4147. doi: 10.1038/s41467-018-06587-2.

10.

Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.

Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA.

Cell. 2018 Jun 14;173(7):1650-1662.e14. doi: 10.1016/j.cell.2018.05.017. Epub 2018 Jun 7.

11.

RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.

Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R.

Mol Cell. 2018 Mar 1;69(5):802-815.e5. doi: 10.1016/j.molcel.2018.01.018.

12.

Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.

Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA.

Elife. 2018 Feb 26;7. pii: e34823. doi: 10.7554/eLife.34823.

13.

6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.

Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA.

Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.

14.

Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures.

Hubin EA, Lilic M, Darst SA, Campbell EA.

Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.

15.

RNA polymerase motions during promoter melting.

Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA.

Science. 2017 May 26;356(6340):863-866. doi: 10.1126/science.aam7858.

16.

Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.

Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA.

Elife. 2017 Mar 20;6. pii: e25478. doi: 10.7554/eLife.25478.

17.

Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.

Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.

18.

Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.

Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA.

Elife. 2017 Jan 9;6. pii: e22520. doi: 10.7554/eLife.22520.

19.

Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry.

Wang G, Hauver J, Thomas Z, Darst SA, Pertsinidis A.

Cell. 2016 Dec 15;167(7):1839-1852.e21. doi: 10.1016/j.cell.2016.11.032.

20.

Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence.

Garner AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA, Campbell EA, Nickels BE, Galburt EA, Stallings CL.

J Bacteriol. 2017 Jan 30;199(4). pii: e00698-16. doi: 10.1128/JB.00698-16. Print 2017 Feb 15.

Supplemental Content

Loading ...
Support Center