Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 145

1.

Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection.

Lee YS, Wu S, Arinzeh TL, Bunge MB.

Biotechnol Bioeng. 2016 Aug 29. doi: 10.1002/bit.26088. [Epub ahead of print]

PMID:
27570167
2.

Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.

Funk LH, Hackett AR, Bunge MB, Lee JK.

J Neuroinflammation. 2016 Apr 20;13(1):87. doi: 10.1186/s12974-016-0552-4.

3.

The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity.

Harrison BJ, Venkat G, Lamb JL, Hutson TH, Drury C, Rau KK, Bunge MB, Mendell LM, Gage FH, Johnson RD, Hill CE, Rouchka EC, Moon LD, Petruska JC.

J Neurosci. 2016 Apr 13;36(15):4259-75. doi: 10.1523/JNEUROSCI.2423-15.2016.

4.

Overexpression of the Fibroblast Growth Factor Receptor 1 (FGFR1) in a Model of Spinal Cord Injury in Rats.

Haenzi B, Gers-Barlag K, Akhoundzadeh H, Hutson TH, Menezes SC, Bunge MB, Moon LD.

PLoS One. 2016 Mar 25;11(3):e0150541. doi: 10.1371/journal.pone.0150541.

5.

Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies.

Bunge MB.

J Physiol. 2016 Jul 1;594(13):3533-8. doi: 10.1113/JP271531.

PMID:
26876753
6.

Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model.

Harrison BJ, Venkat G, Hutson T, Rau KK, Bunge MB, Mendell LM, Gage FH, Johnson RD, Hill C, Rouchka EC, Moon L, Petruska JC.

Genom Data. 2015 Oct 23;6:249-52. doi: 10.1016/j.gdata.2015.10.005.

7.

Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury.

Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C, Brook G, Dobrindt K, Peitz M, Brüstle O, Norenberg MD, Blesch A, Weidner N, Bunge MB, Bixby JL, Bradke F.

Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958.

8.

MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.

Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB.

PLoS One. 2015 Mar 9;10(3):e0118918. doi: 10.1371/journal.pone.0118918.

9.

Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.

Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB.

Rev Neurosci. 2015;26(2):121-8. doi: 10.1515/revneuro-2014-0068. Review.

PMID:
25581750
10.

categoryCompare, an analytical tool based on feature annotations.

Flight RM, Harrison BJ, Mohammad F, Bunge MB, Moon LD, Petruska JC, Rouchka EC.

Front Genet. 2014 Apr 29;5:98. doi: 10.3389/fgene.2014.00098.

11.

Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury.

Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, Ozawa H, Itoi E, Pearse DD, Bunge MB.

J Neurosci. 2014 Jan 29;34(5):1838-55. doi: 10.1523/JNEUROSCI.2661-13.2014.

12.

Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

Williams RR, Henao M, Pearse DD, Bunge MB.

Cell Transplant. 2015;24(1):115-31. doi: 10.3727/096368913X674657.

13.

A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury.

Enomoto M, Bunge MB, Tsoulfas P.

Exp Neurol. 2013 Oct;248:170-82. doi: 10.1016/j.expneurol.2013.06.013.

PMID:
23792206
14.

Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury - how much is enough?

Kwon BK, Soril LJ, Bacon M, Beattie MS, Blesch A, Bresnahan JC, Bunge MB, Dunlop SA, Fehlings MG, Ferguson AR, Hill CE, Karimi-Abdolrezaee S, Lu P, McDonald JW, Müller HW, Oudega M, Rosenzweig ES, Reier PJ, Silver J, Sykova E, Xu XM, Guest JD, Tetzlaff W.

Exp Neurol. 2013 Oct;248:30-44. doi: 10.1016/j.expneurol.2013.05.012. Erratum in: Exp Neurol. 2013 Oct;248:299-300.

PMID:
23727091
15.

Schwann cell transplantation: a repair strategy for spinal cord injury?

Wiliams RR, Bunge MB.

Prog Brain Res. 2012;201:295-312. doi: 10.1016/B978-0-444-59544-7.00014-7. Review.

PMID:
23186720
16.

Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

Flora G, Joseph G, Patel S, Singh A, Bleicher D, Barakat DJ, Louro J, Fenton S, Garg M, Bunge MB, Pearse DD.

Cell Transplant. 2013;22(12):2203-17. doi: 10.3727/096368912X658872.

PMID:
23146351
17.

Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury.

Bunge MB, Wood PM.

Handb Clin Neurol. 2012;109:523-40. doi: 10.1016/B978-0-444-52137-8.00032-2. Review.

PMID:
23098734
18.

Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia.

Gámez Sazo RE, Maenaka K, Gu W, Wood PM, Bunge MB.

Biomaterials. 2012 Nov;33(33):8529-39. doi: 10.1016/j.biomaterials.2012.07.028.

19.

The actin-severing protein cofilin is downstream of neuregulin signaling and is essential for Schwann cell myelination.

Sparrow N, Manetti ME, Bott M, Fabianac T, Petrilli A, Bates ML, Bunge MB, Lambert S, Fernandez-Valle C.

J Neurosci. 2012 Apr 11;32(15):5284-97. doi: 10.1523/JNEUROSCI.6207-11.2012.

20.

Nuclear factor-κB activation in Schwann cells regulates regeneration and remyelination.

Morton PD, Johnstone JT, Ramos AY, Liebl DJ, Bunge MB, Bethea JR.

Glia. 2012 Apr;60(4):639-50. doi: 10.1002/glia.22297.

Items per page

Supplemental Content

Loading ...
Support Center