Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

Kozak BU, van Rossum HM, Luttik MA, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran JM, Pronk JT, van Maris AJ.

MBio. 2014 Oct 21;5(5):e01696-14. doi: 10.1128/mBio.01696-14.

2.

Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.

McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D.

Nucleic Acids Res. 2014 Apr;42(6):e48. doi: 10.1093/nar/gkt1402. Epub 2014 Jan 20.

3.

Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ.

Metab Eng. 2014 Jan;21:46-59. doi: 10.1016/j.ymben.2013.11.005. Epub 2013 Nov 19.

4.

Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.

Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ.

Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E111-8. doi: 10.1073/pnas.1110740109. Epub 2012 Jan 12.

5.

Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range.

Thomson TM, Benjamin KR, Bush A, Love T, Pincus D, Resnekov O, Yu RC, Gordon A, Colman-Lerner A, Endy D, Brent R.

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20265-70. doi: 10.1073/pnas.1004042108. Epub 2011 Nov 23.

6.

The Alpha Project: a model system for systems biology research.

Yu RC, Resnekov O, Abola AP, Andrews SS, Benjamin KR, Bruck J, Burbulis IE, Colman-Lerner A, Endy D, Gordon A, Holl M, Lok L, Pesce CG, Serra E, Smith RD, Thomson TM, Tsong AE, Brent R.

IET Syst Biol. 2008 Sep;2(5):222-33. doi: 10.1049/iet-syb:20080127. Review.

7.

Single-cell quantification of molecules and rates using open-source microscope-based cytometry.

Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, Brent R.

Nat Methods. 2007 Feb;4(2):175-81. Epub 2007 Jan 21.

PMID:
17237792
8.

The Cdk-activating kinase Cak1p promotes meiotic S phase through Ime2p.

Schindler K, Benjamin KR, Martin A, Boglioli A, Herskowitz I, Winter E.

Mol Cell Biol. 2003 Dec;23(23):8718-28.

9.

Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression.

Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK.

Mol Cell Biol. 2003 Jul;23(14):4814-25.

10.

Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2.

Benjamin KR, Zhang C, Shokat KM, Herskowitz I.

Genes Dev. 2003 Jun 15;17(12):1524-39. Epub 2003 Jun 3.

11.

Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I.

Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K.

Nat Cell Biol. 2003 May;5(5):480-5.

PMID:
12717442
12.

Structure of reaction intermediates formed during Saccharomyces cerevisiae Rad51-catalyzed strand transfer.

Holmes VF, Scandellari F, Benjamin KR, Cozzarelli NR.

J Biol Chem. 2002 Oct 11;277(41):38945-53. Epub 2002 Jul 29.

13.

Bypass of heterology during strand transfer by Saccharomyces cerevisiae Rad51 protein.

Holmes VF, Benjamin KR, Crisona NJ, Cozzarelli NR.

Nucleic Acids Res. 2001 Dec 15;29(24):5052-7.

14.

Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.

Benjamin KR, Abola AP, Kanaar R, Cozzarelli NR.

J Mol Biol. 1996 Feb 16;256(1):50-65.

PMID:
8609613

Supplemental Content

Loading ...
Support Center