Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate.

Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K.

J Biol Chem. 1998 Oct 9;273(41):26265-8.

2.

Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes.

Wuyts W, Van Hul W.

Hum Mutat. 2000;15(3):220-7. Review.

PMID:
10679937
3.

[Multiple exostoses].

Toguchida J, Nagayama S.

Nihon Rinsho. 2000 Jul;58(7):1473-8. Review. Japanese.

PMID:
10921326
4.

The exostosin family: proteins with many functions.

Busse-Wicher M, Wicher KB, Kusche-Gullberg M.

Matrix Biol. 2014 Apr;35:25-33. doi: 10.1016/j.matbio.2013.10.001. Review.

5.

Hereditary multiple exostoses and heparan sulfate polymerization.

Zak BM, Crawford BE, Esko JD.

Biochim Biophys Acta. 2002 Dec 19;1573(3):346-55. Review.

PMID:
12417417
6.

New perspectives on the molecular basis of hereditary bone tumours.

McCormick C, Duncan G, Tufaro F.

Mol Med Today. 1999 Nov;5(11):481-6. Review.

PMID:
10529789
7.

Heparan sulphate biosynthesis and disease.

Nadanaka S, Kitagawa H.

J Biochem. 2008 Jul;144(1):7-14. doi: 10.1093/jb/mvn040. Review.

PMID:
18367479
8.

Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb).

Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, Casey B, Bakker B, Sangiorgi L, Wuyts W.

Hum Mutat. 2009 Dec;30(12):1620-7. doi: 10.1002/humu.21123. Review.

PMID:
19810120
9.

[Biosynthesis of heparan sulfate and the tumor suppressor EXT gene family].

Kitagawa H, Sugahara K.

Tanpakushitsu Kakusan Koso. 2000 Mar;45(4):579-86. Review. Japanese. No abstract available.

PMID:
10714174
10.

Heparin and heparan sulfate biosynthesis.

Sugahara K, Kitagawa H.

IUBMB Life. 2002 Oct;54(4):163-75. Review.

11.

[Biosynthetic mechanism of the bioactive sulfated glycosaminoglycans].

Kitagawa H.

Yakugaku Zasshi. 2002 Jul;122(7):435-50. Review. Japanese.

12.

Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies.

Yamaguchi Y, Inatani M, Matsumoto Y, Ogawa J, Irie F.

Prog Mol Biol Transl Sci. 2010;93:133-52. doi: 10.1016/S1877-1173(10)93007-X. Review.

PMID:
20807644
13.

The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins.

Duncan G, McCormick C, Tufaro F.

J Clin Invest. 2001 Aug;108(4):511-6. Review. No abstract available.

14.

Herpes simplex virus: discovering the link between heparan sulphate and hereditary bone tumours.

McCormick C, Duncan G, Tufaro F.

Rev Med Virol. 2000 Nov-Dec;10(6):373-84. Review.

PMID:
11114076
15.

[From gene to disease; hereditary multiple exostoses].

Wuyts W, Bovée JV, Hogendoorn PC.

Ned Tijdschr Geneeskd. 2002 Jan 26;146(4):162-4. Review. Dutch.

PMID:
11845565
16.

Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses.

Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M.

Dev Dyn. 2013 Sep;242(9):1021-32. doi: 10.1002/dvdy.24010. Review.

17.

[Proteoglycan core glycosyltransferases].

Uyama T, Kitagawa H, Sugahara K.

Tanpakushitsu Kakusan Koso. 2003 Jun;48(8 Suppl):1019-26. Review. Japanese. No abstract available.

PMID:
12807004
18.
19.

EXTL2 controls liver regeneration and aortic calcification through xylose kinase-dependent regulation of glycosaminoglycan biosynthesis.

Nadanaka S, Kitagawa H.

Matrix Biol. 2014 Apr;35:18-24. doi: 10.1016/j.matbio.2013.10.010. Review.

20.

[Current studies on glycosyltransferase genes and their perspective: N-acetylglucosaminyltransferases III & V].

Taniguchi N.

Seikagaku. 1993 Dec;65(12):1473-93. Review. Japanese. No abstract available.

PMID:
8308392
Items per page

Supplemental Content

Support Center