Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
Pattern Recognit. 2013 Mar 1;46(3):692-702.

Automated Delineation of Lung Tumors from CT Images Using a Single Click Ensemble Segmentation Approach.

Author information

  • 1Department of Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612. USA.


A single click ensemble segmentation (SCES) approach based on an existing "Click&Grow" algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76% respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated.


CT; Delineation; Ensemble Segmentation; Image Features; Lesion; Lung Tumor; Region growing

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk