Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 7

1.

Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia.

Cui M, Bai X, Li T, Chen F, Dong Q, Zhao Y, Liu X.

PLoS One. 2013;8(2):e57065. doi: 10.1371/journal.pone.0057065. Epub 2013 Feb 21.

2.

Propentofylline: a nucleoside transport inhibitor with neuroprotective effects in cerebral ischemia.

Parkinson FE, Rudolphi KA, Fredholm BB.

Gen Pharmacol. 1994 Oct;25(6):1053-8. Review.

PMID:
7875526
3.

Preconditioning in neuroprotection: From hypoxia to ischemia.

Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y, Ji X.

Prog Neurobiol. 2017 Oct;157:79-91. doi: 10.1016/j.pneurobio.2017.01.001. Epub 2017 Jan 18. Review.

PMID:
28110083
4.

Regulation of adenosine levels during cerebral ischemia.

Chu S, Xiong W, Zhang D, Soylu H, Sun C, Albensi BC, Parkinson FE.

Acta Pharmacol Sin. 2013 Jan;34(1):60-6. doi: 10.1038/aps.2012.127. Epub 2012 Oct 15. Review.

5.

Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia.

Rybnikova E, Samoilov M.

Front Neurosci. 2015 Oct 23;9:388. doi: 10.3389/fnins.2015.00388. eCollection 2015. Review.

6.

The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS.

Mukandala G, Tynan R, Lanigan S, O'Connor JJ.

Brain Sci. 2016 Feb 17;6(1). pii: E6. doi: 10.3390/brainsci6010006. Review.

7.

Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms.

Horowitz M, Umschweif G, Yacobi A, Shohami E.

Front Neurosci. 2015 Jul 28;9:256. doi: 10.3389/fnins.2015.00256. eCollection 2015. Review.

Supplemental Content

Support Center