Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 35

1.

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

Ronzaud C, Loffing-Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler-Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O.

J Clin Invest. 2013 Feb;123(2):657-65. doi: 10.1172/JCI61110. Epub 2013 Jan 25.

2.

NEDD4-2 and salt-sensitive hypertension.

Rizzo F, Staub O.

Curr Opin Nephrol Hypertens. 2015 Mar;24(2):111-6. doi: 10.1097/MNH.0000000000000097. Review.

PMID:
25602517
3.

NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins.

Goel P, Manning JA, Kumar S.

Gene. 2015 Feb 15;557(1):1-10. doi: 10.1016/j.gene.2014.11.051. Epub 2014 Nov 26. Review.

PMID:
25433090
4.
5.

Role of the UPS in Liddle syndrome.

Rotin D.

BMC Biochem. 2008 Oct 21;9 Suppl 1:S5. doi: 10.1186/1471-2091-9-S1-S5. Review.

6.

ENaC and its regulatory proteins as drug targets for blood pressure control.

Rotin D, Schild L.

Curr Drug Targets. 2008 Aug;9(8):709-16. Review.

PMID:
18691017
7.

Effects of angiotensin II on kinase-mediated sodium and potassium transport in the distal nephron.

van der Lubbe N, Zietse R, Hoorn EJ.

Curr Opin Nephrol Hypertens. 2013 Jan;22(1):120-6. doi: 10.1097/MNH.0b013e32835b6551. Review.

PMID:
23165113
8.

Patch-clamp studies on epithelial sodium channels in salivary duct cells.

Cook DI, Dinudom A, Komwatana P, Kumar S, Young JA.

Cell Biochem Biophys. 2002;36(2-3):105-13. Review.

PMID:
12139396
9.

Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination.

Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D.

Kidney Int. 2000 Mar;57(3):809-15. Review.

10.

Liddle's syndrome: a novel mouse Nedd4 isoform regulates the activity of the epithelial Na(+) channel.

Kamynina E, Debonneville C, Hirt RP, Staub O.

Kidney Int. 2001 Aug;60(2):466-71. Review.

11.

Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron.

Staub O, Verrey F.

J Am Soc Nephrol. 2005 Nov;16(11):3167-74. Epub 2005 Sep 28. Review.

12.

The central role of the brain in salt-sensitive hypertension.

Huang BS, Amin MS, Leenen FH.

Curr Opin Cardiol. 2006 Jul;21(4):295-304. Review.

PMID:
16755197
14.

Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice.

Verouti SN, Boscardin E, Hummler E, Frateschi S.

Curr Opin Pharmacol. 2015 Apr;21:60-72. doi: 10.1016/j.coph.2014.12.012. Epub 2015 Jan 20. Review.

PMID:
25613995
15.

Epithelial sodium channel, salt intake, and hypertension.

Hummler E.

Curr Hypertens Rep. 2003 Feb;5(1):11-8. Review.

PMID:
12530930
16.

WNK signalling pathways in blood pressure regulation.

Murthy M, Kurz T, O'Shaughnessy KM.

Cell Mol Life Sci. 2017 Apr;74(7):1261-1280. doi: 10.1007/s00018-016-2402-z. Epub 2016 Nov 4. Review.

17.

Renal tubular transport and the genetic basis of hypertensive disease.

Lang F, Capasso G, Schwab M, Waldegger S.

Clin Exp Nephrol. 2005 Jun;9(2):91-9. Review.

PMID:
15980941
18.

The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation.

Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ.

Pflugers Arch. 2014 Jan;466(1):107-18. doi: 10.1007/s00424-013-1407-9. Epub 2013 Dec 6. Review.

PMID:
24310820
19.

Sodium transporters in the distal nephron and disease implications.

Ecelbarger CA, Tiwari S.

Curr Hypertens Rep. 2006 May;8(2):158-65. Review.

PMID:
16672150
20.

Role of the epithelial sodium channel in salt-sensitive hypertension.

Sun Y, Zhang JN, Zhao D, Wang QS, Gu YC, Ma HP, Zhang ZR.

Acta Pharmacol Sin. 2011 Jun;32(6):789-97. doi: 10.1038/aps.2011.72. Epub 2011 May 30. Review.

Supplemental Content

Support Center