Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli.

Töpfer N, Jozefczuk S, Nikoloski Z.

BMC Syst Biol. 2012 Nov 30;6:148. doi: 10.1186/1752-0509-6-148.

2.

Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

Furusawa C, Horinouchi T, Hirasawa T, Shimizu H.

Adv Biochem Eng Biotechnol. 2013;131:1-23. doi: 10.1007/10_2012_137. Review.

PMID:
22736112
3.

Interplay between the heat shock response and translation in Escherichia coli.

Rasouly A, Ron EZ.

Res Microbiol. 2009 May;160(4):288-96. doi: 10.1016/j.resmic.2009.03.007. Epub 2009 Apr 18. Review.

PMID:
19379808
4.

Advances in network-based metabolic pathway analysis and gene expression data integration.

Rezola A, Pey J, Tobalina L, Rubio Á, Beasley JE, Planes FJ.

Brief Bioinform. 2015 Mar;16(2):265-79. doi: 10.1093/bib/bbu009. Epub 2014 Mar 13. Review.

PMID:
24626528
5.

Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli.

Silva F, Queiroz JA, Domingues FC.

Biotechnol Adv. 2012 May-Jun;30(3):691-708. doi: 10.1016/j.biotechadv.2011.12.005. Epub 2012 Jan 5. Review.

PMID:
22244816
6.

Cold shock response in Escherichia coli.

Yamanaka K.

J Mol Microbiol Biotechnol. 1999 Nov;1(2):193-202. Review.

PMID:
10943550
7.

Cold shock and adaptation.

Thieringer HA, Jones PG, Inouye M.

Bioessays. 1998 Jan;20(1):49-57. Review.

PMID:
9504047
8.

Detecting structural invariants in biological reaction networks.

Behre J, de Figueiredo LF, Schuster S, Kaleta C.

Methods Mol Biol. 2012;804:377-407. doi: 10.1007/978-1-61779-361-5_20. Review.

PMID:
22144164
9.

Bacterial adaptation to cold.

Barria C, Malecki M, Arraiano CM.

Microbiology. 2013 Dec;159(Pt 12):2437-43. doi: 10.1099/mic.0.052209-0. Epub 2013 Sep 25. Review.

PMID:
24068238
10.

Systems analysis of microbial adaptations to simultaneous stresses.

Carlson RP, Oshota OJ, Taffs RL.

Subcell Biochem. 2012;64:139-57. doi: 10.1007/978-94-007-5055-5_7. Review.

PMID:
23080249
11.

The environmental genomics of metazoan thermal adaptation.

Porcelli D, Butlin RK, Gaston KJ, Joly D, Snook RR.

Heredity (Edinb). 2015 May;114(5):502-14. doi: 10.1038/hdy.2014.119. Epub 2015 Mar 4. Review.

12.

Considerations for the use of transcriptomics in identifying the 'genes that matter' for environmental adaptation.

Evans TG.

J Exp Biol. 2015 Jun;218(Pt 12):1925-35. doi: 10.1242/jeb.114306. Review.

13.

Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms.

Watson E, Yilmaz LS, Walhout AJ.

Annu Rev Genet. 2015;49:553-75. doi: 10.1146/annurev-genet-112414-055257. Review.

PMID:
26631516
14.

Controlling gene expression in response to stress.

de Nadal E, Ammerer G, Posas F.

Nat Rev Genet. 2011 Nov 3;12(12):833-45. doi: 10.1038/nrg3055. Review.

PMID:
22048664
15.

Metabolism in bacteria at low temperature: a recent report.

Sengupta D, Chattopadhyay MK.

J Biosci. 2013 Jun;38(2):409-12. Review.

Supplemental Content

Support Center