Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

The chromatin insulator CTCF and the emergence of metazoan diversity.

Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T.

Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17507-12. doi: 10.1073/pnas.1111941109. Epub 2012 Oct 8.

2.

Fossils, molecules and embryos: new perspectives on the Cambrian explosion.

Valentine JW, Jablonski D, Erwin DH.

Development. 1999 Feb;126(5):851-9. Review.

3.

The dawn of bilaterian animals: the case of acoelomorph flatworms.

Baguñà J, Riutort M.

Bioessays. 2004 Oct;26(10):1046-57. Review.

PMID:
15382134
4.

Beyond the Hox: how widespread is homeobox gene clustering?

Holland PW.

J Anat. 2001 Jul-Aug;199(Pt 1-2):13-23. Review.

5.

Hox, ParaHox, ProtoHox: facts and guesses.

Garcia-Fernàndez J.

Heredity (Edinb). 2005 Feb;94(2):145-52. Review.

6.

MetaHox gene clusters.

Coulier F, Popovici C, Villet R, Birnbaum D.

J Exp Zool. 2000 Dec 15;288(4):345-51. Review.

PMID:
11144283
7.

Bilaterian origins: significance of new experimental observations.

Peterson KJ, Cameron RA, Davidson EH.

Dev Biol. 2000 Mar 1;219(1):1-17. Review.

8.

Shaping animal body plans in development and evolution by modulation of Hox expression patterns.

Gellon G, McGinnis W.

Bioessays. 1998 Feb;20(2):116-25. Review.

PMID:
9631657
9.

The bithorax complex of Drosophila an exceptional Hox cluster.

Maeda RK, Karch F.

Curr Top Dev Biol. 2009;88:1-33. doi: 10.1016/S0070-2153(09)88001-0. Review.

PMID:
19651300
10.

CTCF: insights into insulator function during development.

Herold M, Bartkuhn M, Renkawitz R.

Development. 2012 Mar;139(6):1045-57. doi: 10.1242/dev.065268. Review.

11.

Morphological and developmental macroevolution: a paleontological perspective.

Valentine JW, Jablonski D.

Int J Dev Biol. 2003;47(7-8):517-22. Review.

12.

Did homeobox gene duplications contribute to the Cambrian explosion?

Holland PW.

Zoological Lett. 2015 Jan 13;1:1. doi: 10.1186/s40851-014-0004-x. eCollection 2015. Review.

13.

CCCTC-binding factor: to loop or to bridge.

Zlatanova J, Caiafa P.

Cell Mol Life Sci. 2009 May;66(10):1647-60. doi: 10.1007/s00018-009-8647-z. Review.

PMID:
19137260
14.

Shaping segments: Hox gene function in the genomic age.

Hueber SD, Lohmann I.

Bioessays. 2008 Oct;30(10):965-79. doi: 10.1002/bies.20823. Review.

PMID:
18798525
15.

The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication.

Kuraku S, Meyer A.

Int J Dev Biol. 2009;53(5-6):765-73. doi: 10.1387/ijdb.072533km. Review.

16.

Chromatin architectures and Hox gene collinearity.

Noordermeer D, Duboule D.

Curr Top Dev Biol. 2013;104:113-48. doi: 10.1016/B978-0-12-416027-9.00004-8. Review.

PMID:
23587240
17.

CTCF: an architectural protein bridging genome topology and function.

Ong CT, Corces VG.

Nat Rev Genet. 2014 Apr;15(4):234-46. doi: 10.1038/nrg3663. Epub 2014 Mar 11. Review.

18.

Hox genes and evolution.

Hrycaj SM, Wellik DM.

F1000Res. 2016 May 10;5. pii: F1000 Faculty Rev-859. doi: 10.12688/f1000research.7663.1. eCollection 2016. Review.

19.

Origin and evolution of the metazoan non-coding regulatory genome.

Gaiti F, Calcino AD, Tanurdžić M, Degnan BM.

Dev Biol. 2016 Nov 20. pii: S0012-1606(16)30573-5. doi: 10.1016/j.ydbio.2016.11.013. [Epub ahead of print] Review.

PMID:
27880868
20.

Insulators as mediators of intra- and inter-chromosomal interactions: a common evolutionary theme.

Ong CT, Corces VG.

J Biol. 2009 Aug 27;8(8):73. doi: 10.1186/jbiol165. Review.

Supplemental Content

Support Center