Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases.

Sundar IK, Yao H, Rahman I.

Antioxid Redox Signal. 2013 May 20;18(15):1956-71. doi: 10.1089/ars.2012.4863. Epub 2012 Nov 6. Review.

2.
3.

Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD.

Yao H, Rahman I.

Am J Physiol Lung Cell Mol Physiol. 2012 Oct 1;303(7):L557-66. doi: 10.1152/ajplung.00175.2012. Epub 2012 Jul 27. Review.

4.

SIRT1 as a therapeutic target in inflammaging of the pulmonary disease.

Rahman I, Kinnula VL, Gorbunova V, Yao H.

Prev Med. 2012 May;54 Suppl:S20-8. doi: 10.1016/j.ypmed.2011.11.014. Epub 2011 Dec 8. Review.

5.

Redox regulation of SIRT1 in inflammation and cellular senescence.

Hwang JW, Yao H, Caito S, Sundar IK, Rahman I.

Free Radic Biol Med. 2013 Aug;61:95-110. doi: 10.1016/j.freeradbiomed.2013.03.015. Epub 2013 Mar 27. Review.

6.

Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD.

Rajendrasozhan S, Yang SR, Edirisinghe I, Yao H, Adenuga D, Rahman I.

Antioxid Redox Signal. 2008 Apr;10(4):799-811. doi: 10.1089/ars.2007.1938. Review.

7.
8.
9.

Histone deacetylation: an important mechanism in inflammatory lung diseases.

Adcock IM, Ito K, Barnes PJ.

COPD. 2005 Dec;2(4):445-55. Review.

PMID:
17147010
10.

Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease.

Barnes PJ.

Proc Am Thorac Soc. 2009 Dec;6(8):693-6. doi: 10.1513/pats.200907-071DP. Review.

PMID:
20008877
11.

Histone acetylation and deacetylation: importance in inflammatory lung diseases.

Barnes PJ, Adcock IM, Ito K.

Eur Respir J. 2005 Mar;25(3):552-63. Review.

12.

Epigenetic regulation of airway inflammation.

Adcock IM, Tsaprouni L, Bhavsar P, Ito K.

Curr Opin Immunol. 2007 Dec;19(6):694-700. Epub 2007 Aug 27. Review.

PMID:
17720468
13.

Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.

Yao H, Rahman I.

Toxicol Appl Pharmacol. 2011 Jul 15;254(2):72-85. doi: 10.1016/j.taap.2009.10.022. Epub 2011 Feb 4. Review.

14.
15.

Epigenetic interplay between histone modifications and DNA methylation in gene silencing.

Vaissière T, Sawan C, Herceg Z.

Mutat Res. 2008 Jul-Aug;659(1-2):40-8. doi: 10.1016/j.mrrev.2008.02.004. Epub 2008 Feb 29. Review.

PMID:
18407786
16.

Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence.

Yao H, Rahman I.

Biochem Pharmacol. 2012 Nov 15;84(10):1332-9. doi: 10.1016/j.bcp.2012.06.031. Epub 2012 Jul 14. Review.

17.

Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response.

Adcock IM, Cosio B, Tsaprouni L, Barnes PJ, Ito K.

Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):144-52. Review.

PMID:
15650403
18.

Chatting histone modifications in mammals.

Izzo A, Schneider R.

Brief Funct Genomics. 2010 Dec;9(5-6):429-43. doi: 10.1093/bfgp/elq024. Review.

19.

Small molecule modulators of histone acetylation and methylation: a disease perspective.

Selvi BR, Mohankrishna DV, Ostwal YB, Kundu TK.

Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):810-28. doi: 10.1016/j.bbagrm.2010.09.005. Epub 2010 Oct 1. Review.

PMID:
20888936
20.

Epigenetic mechanisms in chronic obstructive pulmonary disease.

Zong DD, Ouyang RY, Chen P.

Eur Rev Med Pharmacol Sci. 2015;19(5):844-56. Review.

Supplemental Content

Support Center