Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 24

1.

CAG expansion induces nucleolar stress in polyglutamine diseases.

Tsoi H, Lau TC, Tsang SY, Lau KF, Chan HY.

Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13428-33. doi: 10.1073/pnas.1204089109. Epub 2012 Jul 30.

2.

Roles of the nucleolus in the CAG RNA-mediated toxicity.

Tsoi H, Chan HY.

Biochim Biophys Acta. 2014 Jun;1842(6):779-84. doi: 10.1016/j.bbadis.2013.11.015. Epub 2013 Nov 20. Review.

3.

Mechanisms of RNA-induced toxicity in CAG repeat disorders.

Nalavade R, Griesche N, Ryan DP, Hildebrand S, Krauss S.

Cell Death Dis. 2013 Aug 1;4:e752. doi: 10.1038/cddis.2013.276. Review.

4.

Expanded polyglutamine stretches lead to aberrant transcriptional regulation in polyglutamine diseases.

Shimohata T, Onodera O, Tsuji S.

Hum Cell. 2001 Mar;14(1):17-25. Review.

PMID:
11436350
5.
6.

Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?

Parlato R, Kreiner G.

J Mol Med (Berl). 2013 May;91(5):541-7. doi: 10.1007/s00109-012-0981-1. Epub 2012 Nov 20. Review.

7.

Cellular stress and nucleolar function.

Mayer C, Grummt I.

Cell Cycle. 2005 Aug;4(8):1036-8. Epub 2005 Aug 20. Review.

PMID:
16205120
8.
9.

Allele-selective suppression of mutant genes in polyglutamine diseases.

Liu CR, Cheng TH.

J Neurogenet. 2015;29(2-3):41-9. doi: 10.3109/01677063.2015.1073275. Epub 2015 Aug 27. Review.

PMID:
26174158
10.

A new PICTure of nucleolar stress.

Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, Sasaki T, Mimori K, Mori M.

Cancer Sci. 2012 Apr;103(4):632-7. doi: 10.1111/j.1349-7006.2012.02219.x. Epub 2012 Mar 8. Review.

11.

The expanding role for chromatin and transcription in polyglutamine disease.

Mohan RD, Abmayr SM, Workman JL.

Curr Opin Genet Dev. 2014 Jun;26:96-104. doi: 10.1016/j.gde.2014.06.008. Epub 2014 Aug 11. Review.

12.

The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies.

Bauer PO, Nukina N.

J Neurochem. 2009 Sep;110(6):1737-65. doi: 10.1111/j.1471-4159.2009.06302.x. Epub 2009 Jul 23. Review.

13.

The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy.

Woods SJ, Hannan KM, Pearson RB, Hannan RD.

Biochim Biophys Acta. 2015 Jul;1849(7):821-9. doi: 10.1016/j.bbagrm.2014.10.007. Epub 2014 Nov 11. Review.

PMID:
25464032
14.

The nucleolus and transcription of ribosomal genes.

Raska I, Koberna K, Malínský J, Fidlerová H, Masata M.

Biol Cell. 2004 Oct;96(8):579-94. Review.

PMID:
15519693
15.

[Mechanisms of neurodegeneration in polyglutamine diseases].

Tsuji S.

Rinsho Shinkeigaku. 2003 Nov;43(11):901-2. Review. Japanese.

PMID:
15152498
16.

The nucleolus—guardian of cellular homeostasis and genome integrity.

Grummt I.

Chromosoma. 2013 Dec;122(6):487-97. Review.

PMID:
24022641
17.

Nucleolar stress with and without p53.

James A, Wang Y, Raje H, Rosby R, DiMario P.

Nucleus. 2014 Sep-Oct;5(5):402-26. doi: 10.4161/nucl.32235. Review.

18.

Small non-coding RNAs add complexity to the RNA pathogenic mechanisms in trinucleotide repeat expansion diseases.

Martí E, Estivill X.

Front Mol Neurosci. 2013 Dec 3;6:45. doi: 10.3389/fnmol.2013.00045. Review.

19.

Targeting the nucleolus for cancer intervention.

Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD.

Biochim Biophys Acta. 2014 Jun;1842(6):802-16. doi: 10.1016/j.bbadis.2013.12.009. Epub 2014 Jan 2. Review.

20.

RNA toxicity in polyglutamine disorders: concepts, models, and progress of research.

Fiszer A, Krzyzosiak WJ.

J Mol Med (Berl). 2013 Jun;91(6):683-91. doi: 10.1007/s00109-013-1016-2. Epub 2013 Mar 20. Review.

Supplemental Content

Support Center