Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function.

Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, Ha S, Chung C, Jung ES, Cho YS, Park SG, Lee JS, Lee K, Kim D, Bae YC, Kaang BK, Lee MG, Kim E.

Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.

PMID:
22699620
2.

Modeling autism by SHANK gene mutations in mice.

Jiang YH, Ehlers MD.

Neuron. 2013 Apr 10;78(1):8-27. doi: 10.1016/j.neuron.2013.03.016. Review.

3.

NMDA receptor dysfunction in autism spectrum disorders.

Lee EJ, Choi SY, Kim E.

Curr Opin Pharmacol. 2015 Feb;20:8-13. doi: 10.1016/j.coph.2014.10.007. Epub 2015 Jan 28. Review.

PMID:
25636159
4.

A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism.

Moskal JR, Burgdorf J, Kroes RA, Brudzynski SM, Panksepp J.

Neurosci Biobehav Rev. 2011 Oct;35(9):1982-8. doi: 10.1016/j.neubiorev.2011.06.006. Epub 2011 Jun 28. Review.

PMID:
21718719
5.

Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles.

Wöhr M.

Neurosci Biobehav Rev. 2014 Jun;43:199-212. doi: 10.1016/j.neubiorev.2014.03.021. Epub 2014 Apr 12. Review.

PMID:
24726578
6.

Glix 13, a new drug acting on glutamatergic pathways in children and animal models of autism spectrum disorders.

Santini AC, Pierantoni GM, Gerlini R, Iorio R, Olabinjo Y, Giovane A, Di Domenico M, Sogos C.

Biomed Res Int. 2014;2014:234295. doi: 10.1155/2014/234295. Epub 2014 Jan 30. Review.

7.

Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective.

Sungur AÖ, Schwarting RKW, Wöhr M.

Behav Brain Res. 2017 Sep 28. pii: S0166-4328(17)30892-6. doi: 10.1016/j.bbr.2017.09.038. [Epub ahead of print] Review.

PMID:
28963042
8.

Synaptic basis of social dysfunction: a focus on postsynaptic proteins linking group-I mGluRs with AMPARs and NMDARs.

O'Connor EC, Bariselli S, Bellone C.

Eur J Neurosci. 2014 Apr;39(7):1114-29. doi: 10.1111/ejn.12510. Review.

PMID:
24712991
9.
10.

Convergent evidence for mGluR5 in synaptic and neuroinflammatory pathways implicated in ASD.

Zantomio D, Chana G, Laskaris L, Testa R, Everall I, Pantelis C, Skafidas E.

Neurosci Biobehav Rev. 2015 May;52:172-7. doi: 10.1016/j.neubiorev.2015.02.006. Epub 2015 Feb 19. Review.

PMID:
25704074
11.

Modeling of autism genetic variations in mice: focusing on synaptic and microcircuit dysfunctions.

Qiu S, Aldinger KA, Levitt P.

Dev Neurosci. 2012;34(2-3):88-100. Epub 2012 May 8. Review.

PMID:
22572629
12.

Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics.

Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN.

Curr Top Behav Neurosci. 2016;28:1-52. doi: 10.1007/7854_2015_5003. Review.

13.

Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments.

Veenstra-VanderWeele J, Blakely RD.

Neuropsychopharmacology. 2012 Jan;37(1):196-212. doi: 10.1038/npp.2011.185. Epub 2011 Sep 21. Review.

14.

Advancing NMDA Receptor Physiology by Integrating Multiple Approaches.

Zhou HX, Wollmuth LP.

Trends Neurosci. 2017 Mar;40(3):129-137. doi: 10.1016/j.tins.2017.01.001. Epub 2017 Feb 8. Review.

PMID:
28187950

Supplemental Content

Support Center