Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 66

1.

CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth.

Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A, Sneddon S, Pestell RG, Martinez-Outschoorn U, Lisanti MP, Sotgia F.

Cell Cycle. 2012 Jun 15;11(12):2272-84. doi: 10.4161/cc.20717. Epub 2012 Jun 15.

2.

Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

Martinez-Outschoorn U, Sotgia F, Lisanti MP.

Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5. Review.

PMID:
24787293
3.

Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.

Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP.

Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51. doi: 10.1016/j.biocel.2011.01.023. Epub 2011 Feb 15. Review.

4.

Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms.

Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP.

Annu Rev Pathol. 2012;7:423-67. doi: 10.1146/annurev-pathol-011811-120856. Epub 2011 Nov 7. Review.

PMID:
22077552
5.

Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth.

Martinez-Outschoorn UE, Lisanti MP, Sotgia F.

Semin Cancer Biol. 2014 Apr;25:47-60. doi: 10.1016/j.semcancer.2014.01.005. Epub 2014 Jan 28. Review.

PMID:
24486645
6.

Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment.

Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP.

Breast Cancer Res. 2011 Jul 8;13(4):213. doi: 10.1186/bcr2892. Review.

7.

Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment.

Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A, Sotgia F.

Cancer Biol Ther. 2010 Sep 15;10(6):537-42. doi: 10.4161/cbt.10.6.13370. Epub 2010 Sep 19. Review.

8.

The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP.

Cell Cycle. 2010 Nov 1;9(21):4297-306. Epub 2010 Nov 30. Review.

9.

Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery.

Lisanti MP, Martinez-Outschoorn UE, Sotgia F.

Cell Cycle. 2013 Sep 1;12(17):2723-32. doi: 10.4161/cc.25695. Epub 2013 Jul 30. Review.

10.

Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.

Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP.

Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84. doi: 10.1089/ars.2011.4243. Epub 2011 Nov 17. Review.

11.

Role of oxidative stress and the microenvironment in breast cancer development and progression.

Jezierska-Drutel A, Rosenzweig SA, Neumann CA.

Adv Cancer Res. 2013;119:107-25. doi: 10.1016/B978-0-12-407190-2.00003-4. Review.

12.

Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition.

Curran CS, Keely PJ.

Matrix Biol. 2013 Mar 11;32(2):95-105. doi: 10.1016/j.matbio.2012.11.016. Epub 2012 Dec 20. Review.

13.

Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues.

Tran CM, Shapiro IM, Risbud MV.

Matrix Biol. 2013 Aug 8;32(6):298-306. doi: 10.1016/j.matbio.2013.03.006. Epub 2013 Apr 6. Review.

14.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways.

Anwar SL, Wahyono A, Aryandono T, Haryono SJ.

Asian Pac J Cancer Prev. 2015;16(16):6803-12. Review.

15.

[TGF-β signaling pathways in cancers].

Talar B, Czyż M.

Postepy Hig Med Dosw (Online). 2013 Sep 25;67:1008-17. doi: 10.5604/17322693.1068073. Review. Polish.

16.

EGFR/TGFα and TGFβ/CTGF Signaling in Neuroendocrine Neoplasia: Theoretical Therapeutic Targets.

Kidd M, Schimmack S, Lawrence B, Alaimo D, Modlin IM.

Neuroendocrinology. 2013;97(1):35-44. doi: 10.1159/000334891. Epub 2012 Jun 15. Review.

17.

Autophagy and cancer cell metabolism.

Lozy F, Karantza V.

Semin Cell Dev Biol. 2012 Jun;23(4):395-401. doi: 10.1016/j.semcdb.2012.01.005. Epub 2012 Jan 18. Review.

18.

Role of TGF-β and the tumor microenvironment during mammary tumorigenesis.

Taylor MA, Lee YH, Schiemann WP.

Gene Expr. 2011;15(3):117-32. Review.

19.

Non-cell-autonomous tumor suppression: oncogene-provoked apoptosis promotes tumor cell senescence via stromal crosstalk.

Reimann M, Schmitt CA, Lee S.

J Mol Med (Berl). 2011 Sep;89(9):869-75. doi: 10.1007/s00109-011-0770-2. Epub 2011 May 19. Review.

PMID:
21594578
20.

The metabolic cooperation between cells in solid cancer tumors.

Icard P, Kafara P, Steyaert JM, Schwartz L, Lincet H.

Biochim Biophys Acta. 2014 Aug;1846(1):216-25. doi: 10.1016/j.bbcan.2014.06.002. Epub 2014 Jun 28. Review.

PMID:
24983675

Supplemental Content

Support Center