Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 19

1.

Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations.

Kachaeva EV, Shenkman BS.

J Biomed Biotechnol. 2012;2012:493618. doi: 10.1155/2012/493618. Review.

2.

[Activity of the skeletal muscle proteolytic systems during functional unloading].

Kachaeva EV, Ushakov IB, Shenkman BS.

Usp Fiziol Nauk. 2012 Jul-Sep;43(3):3-20. Review. Russian.

PMID:
23101376
3.

Ubiquitin-proteasome pathway of intracellular protein degradation: implications for muscle atrophy during unloading.

DeMartino GN, Ordway GA.

Exerc Sport Sci Rev. 1998;26:219-52. Review. No abstract available.

PMID:
9696991
4.

Signaling mechanisms involved in disuse muscle atrophy.

Zhang P, Chen X, Fan M.

Med Hypotheses. 2007;69(2):310-21. Review.

PMID:
17376604
5.

The beneficial role of proteolysis in skeletal muscle growth and stress adaptation.

Bell RA, Al-Khalaf M, Megeney LA.

Skelet Muscle. 2016 Apr 6;6:16. doi: 10.1186/s13395-016-0086-6. Review. Erratum in: Skelet Muscle. 2016;6:19.

6.

Cellular and molecular events controlling skeletal muscle mass in response to altered use.

Favier FB, Benoit H, Freyssenet D.

Pflugers Arch. 2008 Jun;456(3):587-600. doi: 10.1007/s00424-007-0423-z. Review.

PMID:
18193272
7.

Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number.

Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, Edgerton VR.

Adv Space Res. 2002;30(4):777-81. Review.

PMID:
12530363
8.

Atrophy and hypertrophy of skeletal muscles: structural and functional aspects.

Boonyarom O, Inui K.

Acta Physiol (Oxf). 2006 Oct;188(2):77-89. Review.

PMID:
16948795
9.

Atrophy and programmed cell death of skeletal muscle.

Schwartz LM.

Cell Death Differ. 2008 Jul;15(7):1163-9. doi: 10.1038/cdd.2008.68. Review.

10.

Redox homeostasis, oxidative stress and disuse muscle atrophy.

Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R.

J Physiol. 2011 May 1;589(Pt 9):2147-60. doi: 10.1113/jphysiol.2010.203232. Review.

11.

Oxidative stress and disuse muscle atrophy: cause or consequence?

Powers SK, Smuder AJ, Judge AR.

Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5. doi: 10.1097/MCO.0b013e328352b4c2. Review.

12.

Disuse-induced muscle wasting.

Bodine SC.

Int J Biochem Cell Biol. 2013 Oct;45(10):2200-8. doi: 10.1016/j.biocel.2013.06.011. Review.

13.

cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.

Berdeaux R, Stewart R.

Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E1-17. doi: 10.1152/ajpendo.00555.2011. Review.

14.

[The role of electro-mechanical coupling in development of experimental atrophy of skeletal muscles].

Nasledov GA.

Ross Fiziol Zh Im I M Sechenova. 2003 Mar;89(3):302-12. Review. Russian.

PMID:
12968523
15.

Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss.

Siu PM, Alway SE.

Front Biosci (Landmark Ed). 2009 Jan 1;14:432-52. Review.

PMID:
19273076
16.

New findings of lysosomal proteolysis in skeletal muscle.

Sandri M.

Curr Opin Clin Nutr Metab Care. 2011 May;14(3):223-9. doi: 10.1097/MCO.0b013e3283457a75. Review.

PMID:
21415731
17.

In Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use.

Cho SH, Kim JH, Song W.

Endocrinol Metab (Seoul). 2016 Mar;31(1):31-7. doi: 10.3803/EnM.2016.31.1.31. Review.

18.

Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.

Atherton PJ, Greenhaff PL, Phillips SM, Bodine SC, Adams CM, Lang CH.

Am J Physiol Endocrinol Metab. 2016 Sep 1;311(3):E594-604. doi: 10.1152/ajpendo.00257.2016. Review.

PMID:
27382036
19.

A reduced activity model: a relevant tool for the study of ageing muscle.

Perkin O, McGuigan P, Thompson D, Stokes K.

Biogerontology. 2016 Jun;17(3):435-47. doi: 10.1007/s10522-015-9613-9. Review.

Supplemental Content

Support Center