Send to

Choose Destination

Links from PubMed

J Biomed Mater Res A. 2012 Apr;100(4):903-10. doi: 10.1002/jbm.a.34027. Epub 2012 Jan 24.

Reinforcement of electrospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds.

Author information

Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA.


Poly(ε-caprolactone) (PCL) is a promising material for tissue engineering applications; however, it can be difficult to create scaffolds with the morphology, hydrophilicity, and mechanical properties necessary to support tissue growth. Typically, pure PCL scaffolds have good cellular adhesion, but somewhat low mechanical properties (elastic modulus and tensile strength). This study addresses these issues by incorporating Al(2)O(3) whiskers as reinforcements within PCL membranes generated by electrospinning. Membranes were prepared with Al(2)O(3) content ranging from 1 to 20 wt % and characterized using XRD, TEM, and SEM to determine composition and morphology. The Al(2)O(3) whiskers were well dispersed within the PCL fibers, and the membranes had a highly porous morphology. The elastic modulus was significantly improved by the well aligned whisker reinforcements as verified by tensile testing. The cell morphology and proliferation studies demonstrate Al(2)O(3) whisker reinforced PCL scaffolds maintained the good biocompatibility. These improvements demonstrate that Al(2)O(3) whisker reinforced PCL scaffolds can be considered as a biocompatible material for tissue engineering and dental applications.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center