Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions.

Adamczyk AJ, Cao J, Kamerlin SC, Warshel A.

Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14115-20. doi: 10.1073/pnas.1111252108. Epub 2011 Aug 10.

2.

Catalytic efficiency of enzymes: a theoretical analysis.

Hammes-Schiffer S.

Biochemistry. 2013 Mar 26;52(12):2012-20. doi: 10.1021/bi301515j. Epub 2012 Dec 20. Review.

3.

Relating protein motion to catalysis.

Hammes-Schiffer S, Benkovic SJ.

Annu Rev Biochem. 2006;75:519-41. Review.

PMID:
16756501
5.

Perspectives on electrostatics and conformational motions in enzyme catalysis.

Hanoian P, Liu CT, Hammes-Schiffer S, Benkovic S.

Acc Chem Res. 2015 Feb 17;48(2):482-9. doi: 10.1021/ar500390e. Epub 2015 Jan 7. Review.

6.

Structure, dynamics, and catalytic function of dihydrofolate reductase.

Schnell JR, Dyson HJ, Wright PE.

Annu Rev Biophys Biomol Struct. 2004;33:119-40. Review.

PMID:
15139807
7.

Stretching exercises--flexibility in dihydrofolate reductase catalysis.

Miller GP, Benkovic SJ.

Chem Biol. 1998 May;5(5):R105-13. Review.

8.

Keep on moving: discovering and perturbing the conformational dynamics of enzymes.

Bhabha G, Biel JT, Fraser JS.

Acc Chem Res. 2015 Feb 17;48(2):423-30. doi: 10.1021/ar5003158. Epub 2014 Dec 24. Review.

9.

At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?

Kamerlin SC, Warshel A.

Proteins. 2010 May 1;78(6):1339-75. doi: 10.1002/prot.22654. Review.

10.

A perspective on enzyme catalysis.

Benkovic SJ, Hammes-Schiffer S.

Science. 2003 Aug 29;301(5637):1196-202. Review.

PMID:
12947189
11.

Role of dynamics in enzyme catalysis: substantial versus semantic controversies.

Kohen A.

Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24. Review.

12.

Enzyme dynamics point to stepwise conformational selection in catalysis.

Ma B, Nussinov R.

Curr Opin Chem Biol. 2010 Oct;14(5):652-9. doi: 10.1016/j.cbpa.2010.08.012. Epub 2010 Sep 6. Review.

PMID:
20822947
13.

Probing coupled motions in enzymatic hydrogen tunnelling reactions.

Allemann RK, Evans RM, Loveridge EJ.

Biochem Soc Trans. 2009 Apr;37(Pt 2):349-53. doi: 10.1042/BST0370349. Review.

PMID:
19290860
14.

Flexibility, diversity, and cooperativity: pillars of enzyme catalysis.

Hammes GG, Benkovic SJ, Hammes-Schiffer S.

Biochemistry. 2011 Dec 6;50(48):10422-30. doi: 10.1021/bi201486f. Epub 2011 Nov 11. Review.

15.

Conformational Sub-states and Populations in Enzyme Catalysis.

Agarwal PK, Doucet N, Chennubhotla C, Ramanathan A, Narayanan C.

Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9. Review.

16.

Impact of enzyme motion on activity.

Hammes-Schiffer S.

Biochemistry. 2002 Nov 12;41(45):13335-43. Review.

PMID:
12416977
17.

Protein motions and the activation of the CH bond catalyzed by dihydrofolate reductase.

Francis K, Kohen A.

Curr Opin Chem Biol. 2014 Aug;21:19-24. doi: 10.1016/j.cbpa.2014.03.009. Epub 2014 Apr 16. Review.

18.

Preorganization and protein dynamics in enzyme catalysis.

Rajagopalan PT, Benkovic SJ.

Chem Rec. 2002;2(1):24-36. Review.

PMID:
11933259
19.

Folding funnels and conformational transitions via hinge-bending motions.

Kumar S, Ma B, Tsai CJ, Wolfson H, Nussinov R.

Cell Biochem Biophys. 1999;31(2):141-64. Review.

PMID:
10593256
20.

Supplemental Content

Support Center