Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 19

1.

Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis.

Clausen T, Nielsen OB, Clausen JD, Pedersen TH, Hayward LJ.

J Gen Physiol. 2011 Jul;138(1):117-30. doi: 10.1085/jgp.201010586.

2.

Na+-K+ pump stimulation improves contractility in damaged muscle fibers.

Clausen T.

Ann N Y Acad Sci. 2005 Dec;1066:286-94. Review.

PMID:
16533932
3.

Na+-K+ pump regulation and skeletal muscle contractility.

Clausen T.

Physiol Rev. 2003 Oct;83(4):1269-324. Review.

4.

The sodium pump keeps us going.

Clausen T.

Ann N Y Acad Sci. 2003 Apr;986:595-602. Review.

PMID:
12763894
5.

The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance.

Clausen T.

Acta Physiol Scand. 1996 Mar;156(3):227-35. Review.

PMID:
8729682
6.

The regulation of the Na+,K+ pump in contracting skeletal muscle.

Nielsen OB, Harrison AP.

Acta Physiol Scand. 1998 Mar;162(3):191-200. Review.

PMID:
9578365
7.

Lessons learned from muscle fatigue: implications for treatment of patients with hyperkalemic periodic paralysis.

Renaud JM, Hayward LJ.

Recent Pat Biotechnol. 2012 Dec;6(3):184-91. Review.

PMID:
23092434
8.

The Na+,K+ pump and muscle excitability.

Clausen T, Nielsen OB, Harrison AP, Flatman JA, Overgaard K.

Acta Physiol Scand. 1998 Mar;162(3):183-90. Review.

PMID:
9578364
9.

Na+, K(+)-pump activity and skeletal muscle contractile deficits in the spontaneously hypertensive rat.

Carlsen RC, Gray SD, Pickar JG.

Acta Physiol Scand. 1996 Mar;156(3):237-45. Review.

PMID:
8729683
10.

The Na+,K(+)-pump and muscle contractility.

Clausen T, Nielsen OB.

Acta Physiol Scand. 1994 Dec;152(4):365-73. Review.

PMID:
7701937
11.

Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.

McKenna MJ, Bangsbo J, Renaud JM.

J Appl Physiol (1985). 2008 Jan;104(1):288-95. Epub 2007 Oct 25. Review.

12.

Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.

Clausen T.

J Gen Physiol. 2013 Oct;142(4):327-45. doi: 10.1085/jgp.201310980. Review.

13.

Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.

Sejersted OM, Sjøgaard G.

Physiol Rev. 2000 Oct;80(4):1411-81. Review.

14.

Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport.

Nielsen OB, Overgaard K.

Acta Physiol Scand. 1996 Mar;156(3):247-56. Review.

PMID:
8729684
15.
16.

Fuzzy space and control of Na+, K(+)-pump rate in heart and skeletal muscle.

Semb SO, Sejersted OM.

Acta Physiol Scand. 1996 Mar;156(3):213-25. Review.

PMID:
8729681
17.

Novel insights into the pathomechanisms of skeletal muscle channelopathies.

Burge JA, Hanna MG.

Curr Neurol Neurosci Rep. 2012 Feb;12(1):62-9. doi: 10.1007/s11910-011-0238-3. Review.

PMID:
22083238
18.

Regulation of Na+-K+ homeostasis and excitability in contracting muscles: implications for fatigue.

Nielsen OB, de Paoli FV.

Appl Physiol Nutr Metab. 2007 Oct;32(5):974-84. Review.

PMID:
18059624
19.

Muscle function in critically ill patients.

Wagenmakers AJ.

Clin Nutr. 2001 Oct;20(5):451-4. Review.

PMID:
11534941

Supplemental Content

Support Center