Format

Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
J Cell Sci. 2011 Mar 1;124(Pt 5):685-91. doi: 10.1242/jcs.073866.

Cohesin loading and sliding.

Author information

1
Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.

Abstract

Cohesin is best known as a crucial component of chromosomal stability. Composed of several essential subunits in budding yeast, cohesin forms a ring-like complex that is thought to embrace sister chromatids, thereby physically linking them until their timely segregation during cell division. The ability of cohesin to bind chromosomes depends on the Scc2-Scc4 complex, which is viewed as a loading factor for cohesin onto DNA. Notably, in addition to its canonical function in sister chromatid cohesion, cohesin has also been implicated in gene regulation and development in organisms ranging from yeast to human. Despite its importance, both as a mediator of sister chromatid cohesion and as a modulator of gene expression, the nature of the association of cohesin with chromosomes that enables it to fulfil both of these roles remains incompletely understood. The mechanism by which cohesin is loaded onto chromosomes, and how cohesin and the related condensin and Smc5-Smc6 complexes promote DNA interactions require further elucidation. In this Commentary, we critically review the evidence for cohesin loading and its subsequent apparent sliding along chromosomes, and discuss the implications gained from cohesin localisation studies for its important functions in chromosome biology.

PMID:
21321326
DOI:
10.1242/jcs.073866
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center