Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

S100A1: Structure, Function, and Therapeutic Potential.

Wright NT, Cannon BR, Zimmer DB, Weber DJ.

Curr Chem Biol. 2009 May 1;3(2):138-145.

2.

The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments.

Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R.

Braz J Med Biol Res. 1999 Oct;32(10):1177-85. Review.

3.

S100A1 and S100B: Calcium Sensors at the Cross-Roads of Multiple Chondrogenic Pathways.

Diaz-Romero J, Nesic D.

J Cell Physiol. 2017 Aug;232(8):1979-1987. doi: 10.1002/jcp.25720. Epub 2017 Mar 24. Review.

PMID:
27925190
4.

S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy.

Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P.

J Mol Cell Cardiol. 2009 Oct;47(4):445-55. doi: 10.1016/j.yjmcc.2009.06.003. Epub 2009 Jun 16. Review.

5.

Unique S100 target protein interactions.

Rezvanpour A, Shaw GS.

Gen Physiol Biophys. 2009;28 Spec No Focus:F39-46. Review.

6.

S100A1: a major player in cardiovascular performance.

Duarte-Costa S, Castro-Ferreira R, Neves JS, Leite-Moreira AF.

Physiol Res. 2014;63(6):669-81. Epub 2014 Aug 26. Review.

7.

S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function.

Völkers M, Rohde D, Goodman C, Most P.

J Biomed Biotechnol. 2010;2010:178614. doi: 10.1155/2010/178614. Epub 2010 Mar 28. Review.

8.

Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1's triple action in cardiovascular pathophysiology.

Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K, Most P.

Future Cardiol. 2015 May;11(3):309-21. doi: 10.2217/fca.15.18. Review. Erratum in: Future Cardiol. 2015 Jul;11(4):502.

9.

S100A1: a multifaceted therapeutic target in cardiovascular disease.

Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P.

J Cardiovasc Transl Res. 2010 Oct;3(5):525-37. doi: 10.1007/s12265-010-9211-9. Epub 2010 Jul 20. Review.

10.

Joining S100 proteins and migration: for better or for worse, in sickness and in health.

Gross SR, Sin CG, Barraclough R, Rudland PS.

Cell Mol Life Sci. 2014 May;71(9):1551-79. doi: 10.1007/s00018-013-1400-7. Epub 2013 Jun 30. Review.

PMID:
23811936
11.

Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins.

Zhukova L, Zhukov I, Bal W, Wyslouch-Cieszynska A.

Biochim Biophys Acta. 2004 Dec 6;1742(1-3):191-201. Review.

12.

Molecular mechanisms of S100-target protein interactions.

Zimmer DB, Wright Sadosky P, Weber DJ.

Microsc Res Tech. 2003 Apr 15;60(6):552-9. Review.

PMID:
12645003
13.

S100A1: a pluripotent regulator of cardiac and vascular function.

Desjardins JF, Teichert-Kuliszewska K, Parker T.

Can J Cardiol. 2010 Mar;26 Suppl A:9A-12A. Review.

PMID:
20386753
14.

Targeting S100A1 in heart failure.

Ritterhoff J, Most P.

Gene Ther. 2012 Jun;19(6):613-21. doi: 10.1038/gt.2012.8. Epub 2012 Feb 16. Review.

PMID:
22336719
15.

The S100 protein family and its application in cardiac diseases.

Wang XJ, Wang M.

World J Emerg Med. 2010;1(3):165-8. Review.

Supplemental Content

Support Center