Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
J Bone Miner Res. 2010 Mar;25(3):564-74. doi: 10.1359/jbmr.090811.

Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength.

Author information

  • 1Department of Health, Texas A&M University, College Station, Texas 77843-4243, USA.


This study was designed to determine the effectiveness of simulated resistance training (SRT) without weight bearing in attenuating bone and muscle loss during 28 day hindlimb unloading (HU) in mature male rats. An ambulatory control group (CC) and four groups of HU rats were used: HU, HU + anesthesia (ANHU), HU + eccentric muscle contractions (HU + ECC), and HU + isometric and eccentric muscle contractions (HU + ISO/ECC). Animals in the two SRT groups were trained once every other day at 100% daily peak isometric torque (P(0)). HU resulted in significantly lower plantarflexor muscle mass (-33% versus CC) and reduced isometric strength (-10%), which reductions were partially attenuated in both training groups. Significantly reduced total and cancellous volumetric bone mineral density (vBMD) and total bone mineral content (BMC) at the proximal tibia metaphysis (PTM) also was evidenced in HU and ANHU groups compared with both SRT groups (p < .05). Training resulted in greater increases in cortical bone mass and area compared with all other groups (p < .05). Fourfold higher material properties of PTM cancellous bone were demonstrated in SRT animals versus HU or CC animals. A significant reduction in midshaft periosteal bone formation rate (BFR) in the HU group (-99% versus CC) was completely abolished in HU + ECC (+656% versus CC). These results demonstrate that high-intensity muscle contractions, independent of weight-bearing forces, can effectively mitigate losses in muscle strength and provide a potent stimulus to bone during prolonged disuse.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center