Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
Opt Lett. 2009 May 1;34(9):1309-11.

Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator.

Author information

Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA.


Burst-mode planar laser-induced fluorescence (PLIF) imaging of the OH radical is demonstrated in laminar and turbulent hydrogen-air diffusion flames with pulse repetition rates up to 50 kHz. Nearly 1 mJ/pulse at 313.526 nm is used to probe the OH P(2)(10) rotational transition in the (0,0) band of the A-X system. The UV radiation is generated by a high-speed-tunable, injection-seeded optical parametric oscillator pumped by a frequency-doubled megahertz-rate burst-mode Nd:YAG laser. Preliminary kilohertz-rate wavelength scanning of the temperature-broadened OH transition during PLIF imaging is also presented for the first time (to our knowledge), and possible strategies for spatiotemporally resolved planar OH spectroscopy are discussed.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center