Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing.

Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M.

BMC Genomics. 2009 Jan 21;10:37. doi: 10.1186/1471-2164-10-37.

2.

Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing.

Hoffman BG, Jones SJ.

J Endocrinol. 2009 Apr;201(1):1-13. doi: 10.1677/JOE-08-0526. Epub 2009 Jan 9. Review.

3.

Mapping the distribution of chromatin proteins by ChIP on chip.

Nègre N, Lavrov S, Hennetin J, Bellis M, Cavalli G.

Methods Enzymol. 2006;410:316-41. Review.

PMID:
16938558
4.

Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes.

Dunn JJ, McCorkle SR, Everett L, Anderson CW.

Genet Eng (N Y). 2007;28:159-73. Review.

PMID:
17153938
5.

Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation.

Collas P, Dahl JA.

Front Biosci. 2008 Jan 1;13:929-43. Review.

PMID:
17981601
6.

ChIP-chip comes of age for genome-wide functional analysis.

Wu J, Smith LT, Plass C, Huang TH.

Cancer Res. 2006 Jul 15;66(14):6899-902. Review.

7.

Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors.

Muiño JM, Angenent GC, Kaufmann K.

Methods Mol Biol. 2011;754:293-305. doi: 10.1007/978-1-61779-154-3_17. Review.

PMID:
21720960
8.

ChIPing away at the genome: the new frontier travel guide.

Aleksic J, Russell S.

Mol Biosyst. 2009 Dec;5(12):1421-8. doi: 10.1039/B906179G. Review.

PMID:
19617957
9.

Advances in whole genome sequencing technology.

Zhao J, Grant SF.

Curr Pharm Biotechnol. 2011 Feb 1;12(2):293-305. Review.

PMID:
21050163
10.

DNA chips for yeast biotechnology. The case of wine yeasts.

Pérez-Ortín JE, García-Martínez J, Alberola TM.

J Biotechnol. 2002 Sep 25;98(2-3):227-41. Review.

PMID:
12141989
11.
12.

Advantages of next-generation sequencing versus the microarray in epigenetic research.

Hurd PJ, Nelson CJ.

Brief Funct Genomic Proteomic. 2009 May;8(3):174-83. doi: 10.1093/bfgp/elp013. Epub 2009 Jun 17. Review.

PMID:
19535508
13.

Sequencing by hybridization (SBH): advantages, achievements, and opportunities.

Drmanac R, Drmanac S, Chui G, Diaz R, Hou A, Jin H, Jin P, Kwon S, Lacy S, Moeur B, Shafto J, Swanson D, Ukrainczyk T, Xu C, Little D.

Adv Biochem Eng Biotechnol. 2002;77:75-101. Review.

PMID:
12227738
14.

The next generation: using new sequencing technologies to analyse gene regulation.

Cullum R, Alder O, Hoodless PA.

Respirology. 2011 Feb;16(2):210-22. doi: 10.1111/j.1440-1843.2010.01899.x. Review.

PMID:
21077988
15.

Sequencing the yeast genome: an international achievement.

Levy J.

Yeast. 1994 Dec;10(13):1689-706. Review.

PMID:
7747513
16.

Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.

Mundade R, Ozer HG, Wei H, Prabhu L, Lu T.

Cell Cycle. 2014;13(18):2847-52. doi: 10.4161/15384101.2014.949201. Review.

17.

Functional genomics as applied to mapping transcription regulatory networks.

Banerjee N, Zhang MQ.

Curr Opin Microbiol. 2002 Jun;5(3):313-7. Review.

PMID:
12057687
18.

[Genome-wide analysis of chromatin and transcription factor by ChIP-seq].

Kurata T.

Tanpakushitsu Kakusan Koso. 2009 Aug;54(10):1248-55. Review. Japanese. No abstract available.

PMID:
19663251
19.

Next generation sequencing in functional genomics.

Werner T.

Brief Bioinform. 2010 Sep;11(5):499-511. doi: 10.1093/bib/bbq018. Epub 2010 May 25. Review.

PMID:
20501549
20.

Genomic studies of transcription factor-DNA interactions.

Sikder D, Kodadek T.

Curr Opin Chem Biol. 2005 Feb;9(1):38-45. Review.

PMID:
15701451

Supplemental Content

Support Center