Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 32

1.

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes.

Girard CA, Wunderlich FT, Shimomura K, Collins S, Kaizik S, Proks P, Abdulkader F, Clark A, Ball V, Zubcevic L, Bentley L, Clark R, Church C, Hugill A, Galvanovskis J, Cox R, Rorsman P, Brüning JC, Ashcroft FM.

J Clin Invest. 2009 Jan;119(1):80-90. doi: 10.1172/JCI35772. Epub 2008 Dec 8.

2.

Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.

Seino S, Iwanaga T, Nagashima K, Miki T.

Diabetes. 2000 Mar;49(3):311-8. Review.

PMID:
10868950
3.
5.

Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism.

Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S.

Hum Mutat. 2009 Feb;30(2):170-80. doi: 10.1002/humu.20838. Review.

PMID:
18767144
6.

Molecular biology of adenosine triphosphate-sensitive potassium channels.

Aguilar-Bryan L, Bryan J.

Endocr Rev. 1999 Apr;20(2):101-35. Review.

PMID:
10204114
7.

The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells.

Miki T, Nagashima K, Seino S.

J Mol Endocrinol. 1999 Apr;22(2):113-23. Review.

PMID:
10194514
8.

Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11.

Edghill EL, Flanagan SE, Ellard S.

Rev Endocr Metab Disord. 2010 Sep;11(3):193-8. doi: 10.1007/s11154-010-9149-x. Review.

PMID:
20922570
9.

Diabetes and insulin secretion: the ATP-sensitive K+ channel (K ATP) connection.

Koster JC, Permutt MA, Nichols CG.

Diabetes. 2005 Nov;54(11):3065-72. Review.

10.

[Neonatal diabetes mellitus].

Gurgel LC, Moisés RS.

Arq Bras Endocrinol Metabol. 2008 Mar;52(2):181-7. Review. Portuguese.

11.
12.
13.

Molecular cell biology of KATP channels: implications for neonatal diabetes.

Smith AJ, Taneja TK, Mankouri J, Sivaprasadarao A.

Expert Rev Mol Med. 2007 Aug 1;9(21):1-17. Review.

PMID:
17666135
14.

Neonatal diabetes mellitus: a disease linked to multiple mechanisms.

Polak M, Cavé H.

Orphanet J Rare Dis. 2007 Mar 9;2:12. Review.

15.

KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus.

Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS.

J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152. Epub 2015 Sep 13. Review.

16.

ATP-sensitive potassium channels in health and disease.

Clark R, Proks P.

Adv Exp Med Biol. 2010;654:165-92. doi: 10.1007/978-90-481-3271-3_8. Review.

17.

Trafficking of ATP-sensitive potassium channels in health and disease.

Sivaprasadarao A, Taneja TK, Mankouri J, Smith AJ.

Biochem Soc Trans. 2007 Nov;35(Pt 5):1055-9. Review.

PMID:
17956278
18.

Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides.

de Wet H, Proks P.

Biochem Soc Trans. 2015 Oct;43(5):901-7. doi: 10.1042/BST20150096. Review. Erratum in: Biochem Soc Trans. 2015 Dec;43(6):1297.

19.

ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion.

Rorsman P, Ramracheya R, Rorsman NJ, Zhang Q.

Diabetologia. 2014 Sep;57(9):1749-61. doi: 10.1007/s00125-014-3279-8. Epub 2014 Jun 7. Review.

PMID:
24906950
20.

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels.

Martin GM, Chen PC, Devaraneni P, Shyng SL.

Front Physiol. 2013 Dec 24;4:386. doi: 10.3389/fphys.2013.00386. Review.

Supplemental Content

Support Center