Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
Vitam Horm. 2008;79:267-92. doi: 10.1016/S0083-6729(08)00409-3.

Regulation of human dihydrofolate reductase activity and expression.

Author information

  • 1Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08903, USA.


Dihydrofolate reductase (DHFR) enzyme catalyzes tetrahydrofolate regeneration by reduction of dihydrofolate using NADPH as a cofactor. Tetrahydrofolate and its one carbon adducts are required for de novo synthesis of purines and thymidylate, as well as glycine, methionine and serine. DHFR inhibition causes disruption of purine and thymidylate biosynthesis and DNA replication, leading to cell death. Therefore, DHFR has been an attractive target for chemotherapy of many diseases including cancer. Over the following years, in order to develop better antifolates, a detailed understanding of DHFR at every level has been undertaken such as structure-functional analysis, mechanisms of action, transcriptional and translation regulation of DHFR using a wide range of technologies. Because of this wealth of information created, DHFR has been used extensively as a model system for enzyme catalysis, investigating the relations between structure in-silico structure-based drug design, transcription from TATA-less promoters, regulation of transcription through the cell cycle, and translational autoregulation. In this review, the current understanding of human DHFR in terms of structure, function and regulation is summarized.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk