Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease.

Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, Laćan G, Liu D, Khan AH, Cantor RM, Bigelow DJ, Melega WP, Camp DG 2nd, Smith RD, Smith DJ.

J Proteome Res. 2008 Feb;7(2):666-77. doi: 10.1021/pr070546l.

2.

Mitochondrial dysfunction in mouse models of Parkinson's disease revealed by transcriptomics and proteomics.

Smith DJ.

J Bioenerg Biomembr. 2009 Dec;41(6):487-91. doi: 10.1007/s10863-009-9254-2. Review.

3.

Amine-related neurotoxins in Parkinson's disease: past, present, and future.

Nagatsu T.

Neurotoxicol Teratol. 2002 Sep-Oct;24(5):565-9. Review.

PMID:
12200187
4.

New insights on the mitochondrial proteome plasticity in Parkinson's disease.

Aroso M, Ferreira R, Freitas A, Vitorino R, Gomez-Lazaro M.

Proteomics Clin Appl. 2016 Apr;10(4):416-29. doi: 10.1002/prca.201500092. Epub 2016 Feb 24. Review.

PMID:
26749507
5.

Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.

Perfeito R, Cunha-Oliveira T, Rego AC.

Free Radic Biol Med. 2013 Sep;62:186-201. doi: 10.1016/j.freeradbiomed.2013.05.042. Epub 2013 Jun 3. Review.

PMID:
23743292
6.

alpha-Synuclein- and MPTP-generated rodent models of Parkinson's disease and the study of extracellular striatal dopamine dynamics: a microdialysis approach.

Bazzu G, Calia G, Puggioni G, Spissu Y, Rocchitta G, Debetto P, Grigoletto J, Zusso M, Migheli R, Serra PA, Desole MS, Miele E.

CNS Neurol Disord Drug Targets. 2010 Aug;9(4):482-90. Review.

PMID:
20522009
7.

Mechanistic approaches to Parkinson's disease pathogenesis.

Betarbet R, Sherer TB, Di Monte DA, Greenamyre JT.

Brain Pathol. 2002 Oct;12(4):499-510. Review.

PMID:
12408237
8.

Changes in cytokines and neurotrophins in Parkinson's disease.

Nagatsu T, Mogi M, Ichinose H, Togari A.

J Neural Transm Suppl. 2000;(60):277-90. Review.

PMID:
11205147
9.

Molecular changes in the postmortem parkinsonian brain.

Toulorge D, Schapira AH, Hajj R.

J Neurochem. 2016 Oct;139 Suppl 1:27-58. doi: 10.1111/jnc.13696. Epub 2016 Jul 5. Review.

10.

Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria?

Bogaerts V, Theuns J, van Broeckhoven C.

Genes Brain Behav. 2008 Mar;7(2):129-51. Epub 2007 Aug 3. Review.

11.

Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.

Büeler H.

Exp Neurol. 2009 Aug;218(2):235-46. doi: 10.1016/j.expneurol.2009.03.006. Epub 2009 Mar 18. Review.

PMID:
19303005
12.

Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson's disease.

Ebadi M, Sharma SK.

Antioxid Redox Signal. 2003 Jun;5(3):319-35. Review.

PMID:
12880486
13.

The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.

Zuo L, Motherwell MS.

Gene. 2013 Dec 10;532(1):18-23. doi: 10.1016/j.gene.2013.07.085. Epub 2013 Aug 15. Review.

PMID:
23954870
14.

Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse.

Perfeito R, Cunha-Oliveira T, Rego AC.

Free Radic Biol Med. 2012 Nov 1;53(9):1791-806. doi: 10.1016/j.freeradbiomed.2012.08.569. Epub 2012 Aug 25. Review.

PMID:
22967820
15.

Mitochondrial proteomics as a selective tool for unraveling Parkinson's disease pathogenesis.

Pienaar IS, Dexter DT, Burkhard PR.

Expert Rev Proteomics. 2010 Apr;7(2):205-26. doi: 10.1586/epr.10.8. Review.

PMID:
20377388
16.

Oxidative stress in genetic mouse models of Parkinson's disease.

Varçin M, Bentea E, Michotte Y, Sarre S.

Oxid Med Cell Longev. 2012;2012:624925. doi: 10.1155/2012/624925. Epub 2012 Jul 8. Review.

Supplemental Content

Support Center