Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 19

1.

Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production.

Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H.

Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1159-68. Epub 2007 Jun 20.

2.

Mitochondrial signaling contributes to disuse muscle atrophy.

Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA.

Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E31-9. doi: 10.1152/ajpendo.00609.2011. Epub 2012 Mar 6. Review.

3.

The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.

Theilen NT, Kunkel GH, Tyagi SC.

J Cell Physiol. 2017 Sep;232(9):2348-2358. doi: 10.1002/jcp.25737. Epub 2017 Apr 12. Review.

PMID:
27966783
4.

Skeletal muscle aging: role of reactive oxygen species.

Jackson MJ.

Crit Care Med. 2009 Oct;37(10 Suppl):S368-71. doi: 10.1097/CCM.0b013e3181b6f97f. Review.

PMID:
20046122
5.

Redox homeostasis, oxidative stress and disuse muscle atrophy.

Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R.

J Physiol. 2011 May 1;589(Pt 9):2147-60. doi: 10.1113/jphysiol.2010.203232. Epub 2011 Feb 14. Review.

6.

Oxidative stress and disuse muscle atrophy: cause or consequence?

Powers SK, Smuder AJ, Judge AR.

Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5. doi: 10.1097/MCO.0b013e328352b4c2. Review.

7.

Skeletal muscle insulin resistance: role of mitochondria and other ROS sources.

Di Meo S, Iossa S, Venditti P.

J Endocrinol. 2017 Apr;233(1):R15-R42. doi: 10.1530/JOE-16-0598. Review.

8.

[Development of therapies against neuromuscular diseases causing muscle atrophy].

Tsuchida K.

Nihon Shinkei Seishin Yakurigaku Zasshi. 2006 Nov;26(5-6):229-33. Review. Japanese.

PMID:
17240849
9.

Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters.

Del Campo A, Jaimovich E, Tevy MF.

Oxid Med Cell Longev. 2016;2016:9057593. doi: 10.1155/2016/9057593. Epub 2016 Aug 18. Review.

10.

Redox control of skeletal muscle atrophy.

Powers SK, Morton AB, Ahn B, Smuder AJ.

Free Radic Biol Med. 2016 Sep;98:208-217. doi: 10.1016/j.freeradbiomed.2016.02.021. Epub 2016 Feb 18. Review.

11.

Mitochondria Initiate and Regulate Sarcopenia.

Alway SE, Mohamed JS, Myers MJ.

Exerc Sport Sci Rev. 2017 Apr;45(2):58-69. doi: 10.1249/JES.0000000000000101. Review.

12.

SIRT3 and mitochondrial metabolism in neurodegenerative diseases.

Salvatori I, Valle C, Ferri A, Carrì MT.

Neurochem Int. 2017 Oct;109:184-192. doi: 10.1016/j.neuint.2017.04.012. Epub 2017 Apr 25. Review.

PMID:
28449871
13.

Role of reactive oxygen species in age-related neuromuscular deficits.

Jackson MJ, McArdle A.

J Physiol. 2016 Apr 15;594(8):1979-88. doi: 10.1113/JP270564. Review.

14.

Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies.

Choi MH, Ow JR, Yang ND, Taneja R.

Oxid Med Cell Longev. 2016;2016:6842568. doi: 10.1155/2016/6842568. Epub 2015 Dec 22. Review.

15.

Role of reactive oxygen species in the defective regeneration seen in aging muscle.

Vasilaki A, Jackson MJ.

Free Radic Biol Med. 2013 Dec;65:317-23. doi: 10.1016/j.freeradbiomed.2013.07.008. Epub 2013 Jul 10. Review.

16.

Oxidative stress and muscle homeostasis.

Musarò A, Fulle S, Fanò G.

Curr Opin Clin Nutr Metab Care. 2010 May;13(3):236-42. doi: 10.1097/MCO.0b013e3283368188. Review.

PMID:
20098320
17.

Mitochondrial involvement and impact in aging skeletal muscle.

Hepple RT.

Front Aging Neurosci. 2014 Sep 10;6:211. doi: 10.3389/fnagi.2014.00211. eCollection 2014. Review.

18.

Redox Characterization of Functioning Skeletal Muscle.

Zuo L, Pannell BK.

Front Physiol. 2015 Nov 18;6:338. doi: 10.3389/fphys.2015.00338. eCollection 2015. Review.

19.

Mitochondrial Quality Control and Muscle Mass Maintenance.

Romanello V, Sandri M.

Front Physiol. 2016 Jan 12;6:422. doi: 10.3389/fphys.2015.00422. eCollection 2015. Review.

Supplemental Content

Support Center