Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles-Evidence from GAD65-knockout mice studies.

Wu H, Jin Y, Buddhala C, Osterhaus G, Cohen E, Jin H, Wei J, Davis K, Obata K, Wu JY.

Brain Res. 2007 Jun 18;1154:80-3. Epub 2007 Apr 6.

PMID:
17482148
2.

A novel mechanism for GABA synthesis and packaging into synaptic vesicles.

Buddhala C, Hsu CC, Wu JY.

Neurochem Int. 2009 Jul-Aug;55(1-3):9-12. doi: 10.1016/j.neuint.2009.01.020. Epub 2009 Feb 6. Review.

PMID:
19428801
3.

Are GAD65 and GAD67 associated with specific pools of GABA in brain?

Martin DL, Barke KE.

Perspect Dev Neurobiol. 1998;5(2-3):119-29. Review.

PMID:
9777630
4.

Regulation of gamma-aminobutyric acid synthesis in the brain.

Martin DL, Rimvall K.

J Neurochem. 1993 Feb;60(2):395-407. Review.

PMID:
8419527
5.

Uniqueness and redundancy in GABA production.

Pinal CS, Tobin AJ.

Perspect Dev Neurobiol. 1998;5(2-3):109-18. Review.

PMID:
9777629
6.

Two isoforms of glutamate decarboxylase: why?

Soghomonian JJ, Martin DL.

Trends Pharmacol Sci. 1998 Dec;19(12):500-5. Review.

PMID:
9871412
7.

[Gene expression of glutamic acid decarboxylase during neural development and activity].

Obata K.

Tanpakushitsu Kakusan Koso. 2000 Feb;45(3 Suppl):362-7. Review. Japanese. No abstract available.

PMID:
10707642
8.

Glial modulation of GABAergic and glutamat ergic neurotransmission.

Schousboe A, Waagepetersen HS.

Curr Top Med Chem. 2006;6(10):929-34. Review.

PMID:
16787266
9.

The GAD65 knock out mouse - a model for GABAergic processes in fear- and stress-induced psychopathology.

Müller I, Çalışkan G, Stork O.

Genes Brain Behav. 2015 Jan;14(1):37-45. doi: 10.1111/gbb.12188. Review.

10.

Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.

Aubrey KR.

Neurochem Int. 2016 Sep;98:94-102. doi: 10.1016/j.neuint.2016.06.002. Epub 2016 Jun 11. Review.

PMID:
27296116
11.

[Changes in GABA and neural functions induced by gene targeting of GABA-synthesizing enzyme, GAD].

Obata K.

No To Shinkei. 2002 Dec;54(12):1034-40. Review. Japanese. No abstract available.

PMID:
12599518
12.

AAV-GAD gene for rat models of neuropathic pain and Parkinson's disease.

Kim J, Yoon YS, Lee H, Chang JW.

Acta Neurochir Suppl. 2008;101:99-105. Review.

PMID:
18642642
13.

GABA, gamma-hydroxybutyric acid, and neurological disease.

Wong CG, Bottiglieri T, Snead OC 3rd.

Ann Neurol. 2003;54 Suppl 6:S3-12. Review.

PMID:
12891648
14.

Post-translational regulation of L-glutamic acid decarboxylase in the brain.

Wei J, Wu JY.

Neurochem Res. 2008 Aug;33(8):1459-65. doi: 10.1007/s11064-008-9600-5. Epub 2008 Feb 13. Review.

PMID:
18270816
15.
16.

Regulation of excitation by GABA neurotransmission: focus on metabolism and transport.

Madsen KK, Larsson OM, Schousboe A.

Results Probl Cell Differ. 2008;44:201-21. Review.

PMID:
17579816
17.

GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man.

DeLorey TM, Olsen RW.

Epilepsy Res. 1999 Sep;36(2-3):123-32. Review.

PMID:
10515160
18.

The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer.

Bak LK, Schousboe A, Waagepetersen HS.

J Neurochem. 2006 Aug;98(3):641-53. Epub 2006 Jun 19. Review.

19.

Nonsynaptic receptors for GABA and glutamate.

Vizi ES, Mike A.

Curr Top Med Chem. 2006;6(10):941-8. Review.

PMID:
16787268
20.

Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements.

Nyitrai G, Kékesi KA, Juhász G.

Curr Top Med Chem. 2006;6(10):935-40. Review.

PMID:
16787267

Supplemental Content

Support Center